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Abstract: This paper considers the decomposition of surface electromyograms (SEMG) using higher-order statistics 
(HOS). Modelling surface EMG by a MIMO system whose inputs in the form of innervation pulse trains are 
considered independent identically distributed (i.i.d.) random white noise, the system identification methods based on 
higher-order statistics may be introduced. We disclose how a two-phase procedure lead to SEMG decomposition using 
HOS, firstly, obtaining a coarse estimation of the EMG building blocks, i.e., the motor-unit action potentials (MUAPs) 
via a simpler and less complex cumulant-based identification, and, secondly, refining the outcomes of the first phase by 
a more demanding optimisation method. In our experiments on synthetic SEMG signals, we used multivariate C(q,k) in 
the first phase, and non-linear LMS optimisation of third-order cumulants in the second phase. The simulation results 
in rather noisy case with 10 dB additive white Gaussian noise prove the robustness and efficiency of the proposed 
approach. 
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1   Introduction 
Modern way of living causes people to neglect the 
necessity of everyday physical activity on the one hand, 
on the other hand a better medical care and treatment 
have made people live much longer today. Too less 
motion and age bring high risk of nerve and muscle 
diseases. So, the whole society puts a lot of efforts in 
providing services and ways to detect and cure these 
problems of the elderly, and younger as well, 
successfully [1]. 

The nerve system is responsible for the activation of 
muscles. The mechanism is based on electrical 
triggering, i.e., electrical pulses the nerves conduct from 
the brain to the muscles. Every muscle is composed of 
many tiny muscle fibres which, when electrically 
excited, contract and, at the same time, produce a 
measurable electrical potential, called action potential 
(AP). Action potentials emerge at the neuro-muscular 
junction about the middle of the muscle body, in the so 
called innervation zone, and propagate along the fibres 
to both directions towards muscle tendons. Several 
fibres are innervated by the same nerve, i.e. axon. Those 
triggered by one axon form a so called motor unit 
(MU)–see Fig. 1. 

Electrical activity of muscles, the so called 
electromyograms (EMG), can be measured by several 
types of electrodes, ranging from a very precise wire 
electrodes that detect even single fibre action potentials, 
to another invasive type called needle electrodes that 

may detect a few MU potentials, and to surface 
electrodes that are placed on the skin to pick up a large 
amount of the muscle electrical activity [2]. It is 
important for a successful diagnosing, prognosis, or 
treatment to recognize the patterns of as well the 
innervation pulse trains as the MU activities, i.e. MU 
action potentials (MUAPs). Both can be decomposed 
from the measured EMG, while the complexity of the 
problem increases with the number of active MUs. This 
number is rather high in surface EMG–however, it is 
exactly the surface measuring that is preferred because 
of its non-invasiveness [2, 3, 4].  

Fig. 1: Muscle with the innervating axon, the 
innervation zone, and the propagating action potentials 
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In this paper we are going to discuss an approach to 
surface EMG decomposition based on higher-order 
statistics (HOS). Section 2 reveals the decomposition 
model and the necessary conditions for HOS approaches 
to be efficient. Section 3 analyses the character of 
surface EMG signals and shows it is appropriate for a 
HOS application. A decomposition approach supported 
by a short example with synthetic EMG signals is 
depicted in Section 4, while Section 5 concludes the 
paper. 
 
2 MIMO modelling and higher-order 

statistics 
Higher-order statistics can play an important role in 
system identification. It has been shown that a system’s 
impulse response can be deconvolved when the system’s 
input is excited by independent identically distributed 
(i.i.d.), zero-mean, random white noise [5, 6]. Already 
the second order statistical methods solve the problem, 
but only the amplitude response is obtained, while the 
phase remains undetected unless cross-statistics are 
applied (as, for example, in blind source separation 
[14]). However, higher-order statistics do recover the 
signal phase. 

HOS approaches are applicable to multi-channel 
systems too. Modelling such systems, it means we deal 
with a multiple-input multiple-output (MIMO) model. In 
Fig. 2, K inputs wi(n) are convolved by the channel 
impulse responses hij(n), which results in M outputs 
yj(n): 
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Fig. 2: A MIMO model with inputs wi(n), channel 

impulse responses hij(n), and outputs yj(n). 

Every output contains superimposed contributions of all 
the inputs. 

There are some quite efficient MIMO identification 
methods based on HOS [7], but only a few fulfill the 
expectations for a flexible and reliable signal 
decomposition. One would prefer solutions with as few 

knowledge about the system channels and inputs 
necessary to be known in advance as possible. Two 
HOS approaches can be mentioned which are 
independent of the model type (MA, AR, or ARMA) 
and of the channel orders: polycepstral decomposition 
[6, 9, 10] and w-slice method [8]. If the input excitation 
wi(n) corresponds to i.i.d,, zero-mean, random white 
noise, then only taking the system’s outputs yj(n) into 
account the channel impulse responses are identified. 
Proceeding afterwards from the known outputs and 
responses, also the system’s input excitation is 
obtainable. 

 
3 Surface EMG modelling and HOS de-

composition 
Recalling Fig. 1and Eq. (1), it is obvious that surface 
EMG may be modelled the same way. The innervation 
pulse trains resemble Bernoulli noise sequences, 
although they are not entirely i.i.d., which will be 
studied in the sequel. MUs respond as the system’s 
channels, and the outputs correspond to multiple EMG 
measurements.  

Make sure first of the innervation pulse train 
characteristics that would allow considering them a 
proper random white noise excitation and, thus, suitable 
for further processing using HOS. Eq. (2) describes the 
innervation pulse train behaviour: 
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where T stands for the mean inter-pulse interval and Фk 
for the kth realisation of a Gaussian distributed random 
variable. We have shown in [15] that the third-order 
statistics (cumulants) of such sequences exhibit only 
negligible disturbances inside the space bounded by the 
length of the mean inter-pulse interval T. This means  
an EMG may be processed by HOS approaches in spite 
of the fact that the innervation pulse trains do not 
behave thoroughly as i.i.d, random white noises (see 
Eq. (2)). Fig. 3 shows the third-order cumulant of a part 
of real EMG recording. The central encircled area is not 
degraded considerably because of the fact that the 
innervation pulse trains do not behave thoroughly as 
random white noise. This is where the cumulant values 
are to be taken for decomposition purposes. 

 
4 A HOS-based surface EMG decom-

position  
Applying HOS-based methods to the EMG signals, it is 
not only the innervation pulse trains that may hinder an 
efficient decomposition owing to their non-i.i.d. 
character, but also a bad influence of variance in finite  



Fig. 3: Third-order cumulant of a part of real EMG 

recording: the marked rectangular area depicts where 
the fact that the innervation pulse trains do not behave 

thoroughly as random white noise is negligible. 

cases, the inaccuracies of the cumulant estimations, and 
various sources of errors (computational, methods 
inherent, etc.).  So, to make such a decomposition 
feasible it is important that the most robust and reliable 
HOS-based procedure is constructed. It is known that 
the best identification results appear with HOS-based 
optimisations [6]. Moreover, to count on an optimisation 
success, one has to start the optimisation procedure with 
a fairly good approximation of the final results. This is 
why we propose the following HOS-based surface EMG 
decomposition algorithm in 5 steps: 
1. Take surface EMG recordings of steady and 

stationary signals of a duration of at least a minute or 
more (a few thousand repetitions of MUAPs are 
needed); 

2. Compute higher-order cumulants of these 
measurements only up to the lag which corresponds 
approximately to the MUAP duration (a few 10 ms); 

3. Obtain the first coarse decomposed estimates of 
MUAPs using one of blind multi-channel 
identification methods (polycepstral, w-slices, or 
similar); 

4. Use the coarse estimates as starting points in the 
optimisation procedure run on the cumulants 
combining a certain set of lags, as will be shown 
later; 

5.  Optimise until the best possible estimates are 
reached. 

 
4.1 Analytical background of applied HOS 

methods 
If there are K different MUAPs, hij(n), and M 
measurements of EMG, yj(n), then according to Eq. (1) 
and Fig. 1 it follows: 
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Let us now calculate the mth third-order cumulant, m 
corresponding to an observed channel ( Mm ≤≤1 ): 

( ) ( ) ( ) ( )[ ] Mmnynncum m
T

m K1;, 2121 =++= ττττ yyC  (4) 

Eq. (4) represents a basis for the so called multivariate 
C(q,k) identification. Although we suggest a cumulant-
based identification via one of blind approaches in step 
3 of the proposed procedure, we adopted multivariate 
C(q,k) in our experiments because of its ease and the 
characteristics of the analysed synthetic signals known 
a priori. So, the MUAP shapes, i.e. the system channel 
responses, can be determined as 

        ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )[ ] 1
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where  
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and ( )( )kqi
m ,c  represents the ith column of matrix ( )kqm ,C . 

We considered the results of multivariate C(q,k) 
decomposition as the first coarse estimates of MUAPs. 
They were used to initialise a subsequent optimisation 
(step 4 in the proposed procedure). Synthetic EMG 
recordings were included into a least-mean square 
(LMS) cumulant-based optimisation [6]. The basis for 
such decomposition is a system of non-linear equations 
of the following form: 
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where hij(n) stand for the model MUAP shapes as 
detected in a certain step (iteration) of decomposition, 
and the hat (^) denotes the cumulant estimation based 
on the measured output yj(n). 

To be able to solve the system of equations from (6), 
the number of equations must be at least K⋅N if the 
length of K source signals (MUAPs) equals N. To 
decompose the generated synthetic SEMGs, we applied 
the MATLAB function called lsqnonlin, which 
minimises the least square norm of the system using the 
large-scale, trust-region reflective Newton algorithm 
[12]. The cumulant estimates used in these equations 
are taken from 1/6 of the cumulant matrix in such a 
manner that τ1=0,…, , τ2 ≤ τ1. 



 
4.2 Experimental results with synthetic surface 

EMGs 
To verify the appropriateness of the suggested 
approach, we simulated surface EMGs with known 
parameters, i.e. known shapes of MUAPs and 
innervation pulse trains. The generation of MUAPs and 
recorded signals was done using the EMG simulator of 
the LISIN laboratory  of Torino, Italy [11]. As a matter 
of fact, their MATLAB routines Model_final.m and 
genera_sig.m are based on physiological considerations 
and create surface EMG signals with certain 
parameters. We simulated two MUAPs with rather 
different shapes (Fig. 4) and three pick-ups for the 
EMG measurements (Fig. 5) [13].  
 

  
Fig. 4: Two MUAPs generated for simulations 

Fig. 5: MIMO(2,3) model for the synthetic EMG signal 
generation 

The main model parameters applied were the following: 
• ARMA(2,3) model was chosen, so 2 MUAPs were 

generated and measured by 3 surface pick-ups; 
• one MU was assumed 3 mm, the other 6 mm deep, 

the former with 5 and the latter with 20 fibres; 
• fibres of the first MU were aligned with the 

electrode placement, while the second one had 
fiberes inclined by 10 degrees and shifted 10 mm 
in the x direction from the electrode array; 

• spread of the innervation zone was taken 0 mm for 
the first, and 10 mm for the second MU; 

• conduction velocity was taken 4 m/s for all fibres;  
• measurements were supposed double differential; 
• rectangular electrodes 5 by 1 mm were simulated; 
• the interelectrode distance was taken 10 mm; 

• the electrode array was assumed placed between 
the innervation zone and tendons of fibres of 
length of 70 mm; 

• sampling frequency of 1024 Hz was used for the 
generated EMG signal; 

• three synthetic SEMG signals were generated in 
duration of 100 s. 

Fig. 6 depicts 1 s of the generated first channel 
synthetic surface EMG. All three, also the second and 
the third channel output measurements, consist of 
highly superimposed replicas of the two MUAPs from 
Fig. 4. 

After applying the proposed decomposition 
procedure, we obtained the following results: 

Step 1: We generated 100 s of 3-channel synthetic 
surface EMG. 

Step 2: Third-order cumulants of dimension 64×64 
were calculated out of each channel output 
measurement. 

Fig. 6: A part of the first channel synthetic EMG with 
10 dB additive white Gaussian noise 

Step 3: The C(q,k) method was applied to obtain the 
rough estimates of MUAP. It turns out that the 
decomposition outcomes depend on the choice of the 
cumulant matrix column denoted by superscript i in Eq. 
(5). Fig. 7 shows the MUAPs as decomposed with three 
different cumulant-matrix columns. None of the 
estimated MUAPs matches the original, although some 
resemblance may de observed.  

Steps 4 and 5: The MUAPs obtained using the first 
cumulant-matrix column (step 3), i=1, introduced initial 
values to the non-linear LMS optimisation. The number 
of linear equation we respected in the optimisation from 
Eq. (6) was 36, meaning that for each of the two 
expected source MUAPs 18 samples were estimated. 
Noisy case was simulated by superimposing 10 dB of 
additive white Gaussian noise to the EMGs prior to the 
cumulant calculation. The decomposition outcomes 
obtained after the optimisation process are depicted in 
Fig. 8. 
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Fig. 7: Identification of the system responses h11 (left) 
and h23 (right). Influence of the selected column of the 
cumulant matrix, i in Eq. (5) and depicted as col in the 

images, is obvious: columns i=1, 2, and 3 generated the 
outcomes depicted by solid, dashed, and dotted lines, 

respectively.  
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Fig. 8: Results of the cumulant-based non-linear LMS 

optimisation: the original MUAP shapes dashed, 
decomposed MUAPs in solid lines. 

As we can see from Fig. 8, the results has been 
significantly improved comparing to the initial stage 
after the C(q,k) decomposition. The original MUAP 
shapes are dashed, while the decomposition results are 
depicted with solid lines. 

 
5   Conclusion 

Higher-order statistical approaches can be successful in 
all the cases where a random but also repetitive nature 
of appearance of signal building blocks is present. 
Bioelectric signals, such as EMGs, exhibit exactly such 
kind of behaviour. The reason why there have not been 

many trials of decomposing the bioelectric signals by 
HOS-based methods probably lie in the drawbacks that 
hinder wider implementation of such processing. The 
main two are a need for long steady, stationary signals 
and a very high computational complexity. Looking 
from the SEMG decomposition view point, the need of 
long, stationary recordings of up to a few minutes 
duration cannot always be fulfilled.  

In spite of this, HOS-based methods have many nice 
properties, probably the most attractive be a capability 
of considerable suppression of Gaussian additive noise. 
We have shown in this paper the way of how an SEMG 
decomposition can be supported by HOS. It is 
important that several MUAPs can be decomposed from 
fewer parallel SEMG recordings, e.g. from only one-
channel measurement. The MUAP superimpositions do 
not hinder a thorough decomposition. The MUAP 
shapes can be obtained directly, the innervation trains, 
however, must be recognised by some other means, e.g. 
using the time-scale phase representations as shown in 
[16]. 
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