
Iterative Algorithm for Computing the Eigenvalues

LILJANA FERBAR
Faculty of Economics

University of Ljubljana
Kardeljeva pl. 17, 1000 Ljubljana

SLOVENIA

Abstract: - We consider the eigenvalue problem xHx λ= , where H is a real symmetric matrix. When
eigenvalues of symmetric matrices are computed it is generally expected that they will be computed with an
error bound proportional to the product of machine precision and the norm of the matrix. In particular, tiny
eigenvalues are usually not computed to high relative accuracy. We propose an iterative refinement of the
eigensolution computed by a fast method. Our algorithm usually gives the eigensolution with high relative
accuracy and it is more efficient than accurate Jacobi type methods.

Key-Words: - Symmetric eigenvalue problem, Fast method, Jacobi method, Stopping criterion, Accuracy,
Efficiency

1 Introduction
In this paper we consider the eigenvalue problem

xHx λ= . The scalar λ is the eigenvalue and the
vector x is the corresponding eigenvector of the
matrix H. If H is symmetric or Hermitian matrix of
order n, then H has exactly n real eigenvalues, and
the corresponding eigenvectors span the basis of the
n-dimensional space. More precisely, for a
symmetric matrix H we have

 Λ=HQQT , (1)

where)(iλdiag=Λ is a diagonal matrix with
eigenvalues of H on the diagonal, and Q is
orthogonal matrix whose columns are the
corresponding eigenvectors.
 Solution of many problems in technical
applications is reduced to solving eigenvalue
problems. Thus, these problems attract considerable
attention and represent one of the most important
areas of numerical linear algebra.
 The first method for solving eigenvalue problem
for symmetric matrices is the Jacobi method [10, 6],
which dates back in 1846. The Jacobi method
constructs a sequence of matrices

HH =1 , kk
T
kk RHRH =+1 ,

which converges to the eigenvalue matrix Λ , while
the sequence of products kRRR L21 converges to
the eigenvector matrix Q . Matrices kR are the
orthogonal plane rotation matrices chosen to
annihilate one off-diagonal element of the matrix

kH . Due to the finite arithmetic of the computer
this infinite iterative procedure stops after a finite
number of steps.
 In 1960-ties the QR methods [10, 6] are being
developed by many authors. These methods first
reduce the symmetric matrix H to tridiagonal matrix
T by using orthogonal similarity transformations,
and then use QR iterations to solve the eigenvalue
problems for the matrix T. Although both methods
require O(n3) floating-point operations, the QR
methods are about five times faster than Jacobi type
methods.
 The divide-and-conquer (D&C) method, which is
particularly efficient for tridiagonal matrices, is very
suitable for multi-processor computers. The method
first partitions the starting matrix into blocks, then
solves the smaller eigenvalue problems, and finally
connects all the solutions. We conclude that the
choice of the method depends upon the structure and
the size of the matrix, on the requirements for speed
and accuracy, and the available hardware.
 Using the computers in solving eigenvalue
problems has lead to two aspects of research: speed
and accuracy. Due to the need of solving larger and
larger problems, the first aspect of research is

finding faster algorithms and the analysis of their
speed of convergence. The second is the question of
accuracy: how many accurate digits does the
computed eigenvalue have?
 In applications four kinds of errors appear: errors
of the model, errors in data, errors in storing the
matrix into the computer, and the errors generated
by the computational method. When storing the
matrix H into the computer, instead of the element
Hij we store the element

 ijij HH δ+ , |||| ijij HH εδ ≤ , (2)

where ε is the machine precision, 810−≈ε (single
precision) or 1610−≈ε (double precision).
Therefore, the last stored digit need not be correct
and instead of H we store some HH δ+ . The
condition is defined as the number κ , which tells us
how many times does the error in original data
increase. If λ i is the i-th largest eigenvalue of the
matrix H, and ii δλλ + is the i-th largest computed
eigenvalue, then the answer to the question about
accuracy generally has the form

|||||||| ii H λδκδλ ⋅⋅≤ . (3)

 The condition κ depends on the matrix, but also
on the computational method, which we use. We
know that accuracy of the computed eigenvalue
depends on the following: is the matrix “well-
behaved”, this is, do small relative changes in
matrix elements cause small relative changes in
eigenvalues, and if this is the case, which algorithm
computes eigenvalues with this accuracy. In general,
to answer the first question an appropriate
perturbation theory for the given type of problem
needs to be developed, while the answer to the
second question is given by the numerical analysis
of the algorithm.
 Many authors have noticed that for some
problems different methods give answers with
widely varying accuracy. For example, in 1968
Rosanoff et al. [7] noticed that the Jacobi method
often computed tiny eigenvalues much more
accurate than the QR method. The authors had many
excellent observations and gave interesting
explanations for facts, which were much later
established with complete mathematical rigor. In
1980-ties many articles appear and the intensive
research is still going on.

 The symmetric (Hermitian) eigenvalue problem
was analyzed by Barlow and Demmel [1] for scaled
diagonally dominant matrices, by Demmel and
Veselić [2] for positive definite matrices and by
Veselić and Slapničar [9] for indefinite matrices.
They proved that different types of matrices written
above are “well-behaved” matrices.

2 Iterative algorithm
We propose an iterative refinement for the spectral
decomposition TQQH Λ= of a given real
symmetric matrix H of order n. As we know, the
more accurate Jacobi methods are several times
slower than the standard methods, based on
tridiagonalisation.
 Our aim is, therefore, to solve the problem as
quickly and as accurately as possible. However, the
existing algorithms can not satisfy both of these two
requirements, thus we have to find a compromise,
which ultimately depends on our priorities.
 To satisfy the speed requirement, Drmač and
Veselić [3] suggested to first perform the eigenvalue
decomposition TQQH Λ= by using some fast
method (QR or D&C), then to compute the Rayleigh
matrix HQQH T=' and finally to refine the solution
by applying the Jacobi method to the Rayleigh
matrix. They proved that this algorithm is more
efficient (faster) then Jacobi method on the initial
matrix H, while giving the similar relative accuracy
as the Jacobi method.
 In this paper we show that we get similar
accuracy and faster convergence if in the third step
we substitute Jacobi method with one of the fast
methods and then iteratively repeat the second and
the third step until accuracy requirement is satisfied.
We suggest the following iterative algorithm:

Algorithm
1. decompose TQQH Λ= by a fast

method,
2. compute the Rayleigh matrix

HQQH T=' ,
3. if 'H is not diagonal enough treat it

again by a fast method TQQH '''' Λ= ,
4. repeat 2. and 3. step for ': QQQ = .

 In the third step of Algorithm (if 'H is not
diagonal enough) we use the following stopping
criterion

 jjiiij DDtolE ⋅⋅≤ ε , for all nji ≤≤ ,1 , (4)

where)'(HdiagD = and 0)(=Ediag , if the matrix

'H is written as EDH +=' . If condition (4) is not
fulfilled for all elements of matrix 'H , we must find
the partition

 







+

+
=+=

222212

121111
1 EDE

EED
EDD T , (5)

where elements of matrices 11E and 12E fulfil the
condition (4) while elements of matrix 22E are
relatively big in comparison with elements of
matrix 22D . We can find the partition (5) in two
different ways (for details see [5]):

1. by choosing “bad elements” (those elements

which do not satisfy the condition (4)) or
2. by choosing “good elements” (those elements

which satisfy the condition (4)).

 Although the criterion by choosing good
elements does not assure that all eigenvalues will be
improved (some of them can even be spoiled), the
numerical results show us that this strategy of good
elements gives the eigensolution with high relative
accuracy and it is more efficient than strategy of
bad elements.

3 Numerical Experiments
In this section we present the results of our
numerical experiments. We tested the Algorithm
above for different classes of matrices. We generate
three types of random matrices:

1. indefinite matrices,
2. positive definite matrices and
3. scaled diagonally dominant matrices.

 For each dimension of matrix
(100,50,32,16,6 =n) we generate 120 random
matrices in the first two classes and 40 random
matrices in the third class. This makes a total of
1400 different test matrices.

 For a fast method in the first and the third step of
Algorithm we use D&C method based on
tridiagonalisation by Householder’s reflectors (see
[4]). We also tested QR method instead of D&C
method and got similar accuracy. Because D&C
method is quicker than QR we use it as a
benchmark in further analysis.
 In the third step of Algorithm we use the
stopping criterion by choosing good elements.
Although this criterion does not assure that all
eigenvalues will be improved (some of them can
even be spoiled), the numerical results from Table 1
show us that relative errors of computed
eigenvalues on the average become smaller.
 The reference values are computed by Jacobi
method [8] and are denoted by iλ . The computed
eigenvalues are denoted by i'λ and the relative
error is computed as

||

|'|
max

i

ii
ierrorrelative

λ
λλ −

= . (6)

 The computed relative errors are given in Table
1, Table 2 and Table 3. In Table 1 we use the
following notations:

- MinHDC: the minimal relative errors for the
first step of Algorithm,

- MaxHDC: the maximal relative errors for the
first step of Algorithm,

- AveHDC: the average relative errors for the
first step of Algorithm,

- AveALG: the average relative errors of
Algorithm.

type dim MinHDC MaxHDC AveHDC AveALG
6 5,0E-09 5,7E-07 1.01E-07 1.51E-07

16 2,2E-13 2,3E-04 2.12E-05 8.50E-07
32 5,8E-15 2,8E-03 1.83E-04 3.18E-06
50 9,6E-15 8,7E-03 3.04E-04 8.76E-05

1

100 2,3E-14 2,1E-02 4.25E-04 9.85E-08
6 7,3E-16 2,3E-06 3.54E-07 6.75E-08

16 1,7E-15 2,8E-03 1.85E-04 8.54E-08
32 4,1E-15 5,9E-03 3.53E-04 2.75E-05
50 6,0E-15 2,1E-02 6.47E-04 8.41E-05

2

100 1,5E-14 2,8E-02 6.63E-04 5.83E-05
6 2,7E-12 2,5E-05 4.30E-06 5.58E-07

16 2,6E-13 4,2E-03 9.12E-07 8.00E-10
32 3,7E-15 4,4E-03 2.80E-06 1.53E-08
50 5,4E-15 1,6E-02 1.82E-06 3.66E-07

3

100 1,3E-14 2,1E-02 2.45E-05 1.54E-06

Table 1

 In Table 2 and Table 3 we use the following
notations:
- NImp: the number of improved eigenvalues,
- MinImp: the minimal relative errors of

improved eigenvalues,
- MaxImp: the maximal relative errors of

improved eigenvalues,
- NSpo: the number of spoiled eigenvalues,
- MinSpo: the minimal relative errors of spoiled

eigenvalues,
- MaxSpo: the maximal relative errors of spoiled

eigenvalues.

type dim NImp MinImp MaxImp
6 1,7 1,7E-08 1,8E-08

16 6,1 9,3E-12 1,7E-05
32 11,1 1,6E-14 1,9E-05
50 18,0 2,7E-14 1,8E-04

1

100 31,5 2,6E-14 5,5E-06
6 1,7 8,3E-11 8,5E-11

16 4,6 3,6E-13 6,3E-07
32 10,4 8,5E-13 7,5E-04
50 18,8 7,8E-15 9,0E-06

2

100 34,9 1,6E-14 2,5E-03
6 0,9 2,3E-13 2,0E-09

16 5,5 8,0E-12 9,4E-07
32 8,7 6,4E-13 5,6E-04
50 15,0 1,3E-14 6,7E-06

3

100 27,7 5,6E-12 1,9E-03

Table 2

type dim NSpo MinSpo MaxSpo
6 1,3 8,8E-07 1,3E-06

16 1,5 4,8E-05 4,8E-05
32 1,5 9,1E-05 9,2E-05
50 1,3 2,7E-03 2,7E-03

1

100 1,3 9,7E-03 9,7E-03
6 1,5 1,6E-07 5,5E-07

16 3,1 1,3E-05 1,3E-05
32 3,3 6,6E-06 7,5E-06
50 2,2 1,8E-03 6,0E-03

2

100 0,9 1,2E-02 1,3E-02
6 0,3 2,3E-05 2,3E-05

16 1,8 1,9E-05 2,0E-05
32 2,6 2,1E-05 2,2E-05
50 1,7 1,4E-03 4,5E-03

3

100 0,7 9,3E-03 9,8E-03

Table 3

 The timing results for Jacobi method [8]
(notation TimeJAC) and for our Algorithm
(notation TimeALG) are given in Table 4. The
number of iterations is denoted with NumIt. For all
quantities we give mean value on the respective
class and dimension of test matrices.

type dim TimeJAC TimeALG NumIt

6 1,3 2,0 0,9
16 13,4 11,5 1,0
32 85,7 59,2 0,9
50 292,6 183,0 0,9

1

100 2099,9 1150,0 0,8
6 1,2 1,9 1,0

16 13,2 12,2 1,2
32 80,3 64,0 1,2
50 269,6 199,4 1,3

2

100 1880,4 1245,7 1,2
6 1,0 1,4 0,4

16 8,2 9,8 1,1
32 45,2 49,7 1,0
50 145,7 154,6 1,1

3

100 1053,5 1013,8 1,0

Table 4

 As we can see from Table 2, we get about 30 %
improved eigenvalues. Although we get about 8 %
spoiled eigenvalues (Table 3), we can conclude that
the maximal relative errors of spoiled values (the
column MaxSpo of the Table 3) are still smaller
than maximal relative errors of the initial calculated
values (the column MaxHDC of the Table 1). This
means that on the average relative errors become
smaller as we can see in the last column (AveALG)
of Table 1.
 As we can see from Table 4, on the average only
one iteration of Algorithm is needed for the
refinement of the eigensolution. Moreover, we can
conclude that our Algorithm is more efficient than
Jacobi method. If we compare TimeALG and
TimeJAC in Tabel 4, we can see that our Algorithm
brought about 27 % speed up over Jacobi method.

4 Conclusion
Based on results of a series of numerical
experiments we show that the combination of
tridiagonalisation by using Householder’s reflectors
and D&C method, considering the stopping criterion
by choosing good elements, gives us the most
efficient (fastest) algorithm, taking into account the
accuracy requirement.

References:
[1] J. Barlow and J. Demmel, Computing Accurate

Eigensystems of Scaled Diagonally Dominant
Matrices, SIAM J. Numer. Anal., Vol.27, No.3,
1990, pp. 762-791.

[2] J. Demmel and K. Veselić, Jacobi's method is
more accurate then QR, SIAM J. Matrix Anal.
Appl., Vol.13, No.4, 1990, pp. 1204-1245.

[3] Z. Drmač and K. Veselić, Approximate
eigenvectors as preconditioner, Linear Algebra
and its Appl. 309, 2000, pp. 191-215.

[4] L. Ferbar, Computing the Eigenvalues by a
Fast Method, Proc. of the 6th International
Symposium on Operational Research in
Slovenia, Preddvor, 2001, pp. 65-69.

[5] L. Ferbar, Stopping Criterion at the Iterative
Refinement of the Eigensolution, Proc. of
Slovenian Informatics Conference 2002,
Portorož, 2002, pp. 350-354.

[6] G. H. Golub and C. F. Van Loan, Matrix
Computations, Baltimore and London :
University Press, 1989.

[7] R. A. Rosanoff, J. F. Gloudeman and S. Levy,
Numerical conditions of stiffness matrix
formulations for frame structures, Proc. of the
2nd Conference on Matrix methods in
Structural Mechanics, WPAFB, Dayton, 1968.

[8] I. Slapničar, Accurate Symmetric
Eigenreduction by a Jacobi Method, PhD
thesis, Lehrgebiet Mathematische Physik,
Fernuniversität Hagen, 1992.

[9] K. Veselić and I. Slapničar, Floating-point
perturbations of Hermitian matrices, Linear
Algebra and its Appl. 195, 1993, pp. 81-116.

[10] J. H. Wilkinson, The Algebraic Eigenvalue
Problem, Oxford : Clarendon Press, 1965.

