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Abstract: - We consider the eigenvalue problem xHx λ= , where H is a real symmetric matrix. When 
eigenvalues of symmetric matrices are computed it is generally expected that they will be computed with an 
error bound proportional to the product of machine precision and the norm of the matrix. In particular, tiny 
eigenvalues are usually not computed to high relative accuracy. We propose an iterative refinement of the 
eigensolution computed by a fast method. Our algorithm usually gives the eigensolution with high relative 
accuracy and it is more efficient than accurate Jacobi type methods.  
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1 Introduction 
In this paper we consider the eigenvalue problem 

xHx λ= . The scalar λ  is the eigenvalue and the 
vector x is the corresponding eigenvector of the 
matrix H. If H is symmetric or Hermitian matrix of 
order n, then H has exactly n real eigenvalues, and 
the corresponding eigenvectors span the basis of the 
n-dimensional space. More precisely, for a 
symmetric matrix H we have 
  

     Λ=HQQT ,                  (1) 
 
where )( iλdiag=Λ  is a diagonal matrix with 
eigenvalues of H on the diagonal, and Q is 
orthogonal matrix whose columns are the 
corresponding eigenvectors.  
     Solution of many problems in technical 
applications is reduced to solving eigenvalue 
problems. Thus, these problems attract considerable 
attention and represent one of the most important 
areas of numerical linear algebra.  
     The first method for solving eigenvalue problem 
for symmetric matrices is the Jacobi method [10, 6], 
which dates back in 1846. The Jacobi method 
constructs a sequence of matrices  
 

HH =1 ,    kk
T
kk RHRH =+1 , 

 

which converges to the eigenvalue matrix Λ , while 
the sequence of products kRRR L21  converges to 
the eigenvector matrix Q . Matrices kR  are the 
orthogonal plane rotation matrices chosen to 
annihilate one off-diagonal element of the matrix 

kH . Due to the finite arithmetic of the computer 
this infinite iterative procedure stops after a finite 
number of steps. 
     In 1960-ties the QR methods [10, 6] are being 
developed by many authors. These methods first 
reduce the symmetric matrix H to tridiagonal matrix 
T by using orthogonal similarity transformations, 
and then use QR iterations to solve the eigenvalue 
problems for the matrix T. Although both methods 
require O(n3) floating-point operations, the QR 
methods are about five times faster than Jacobi type 
methods.  
     The divide-and-conquer (D&C) method, which is 
particularly efficient for tridiagonal matrices, is very 
suitable for multi-processor computers. The method 
first partitions the starting matrix into blocks, then 
solves the smaller eigenvalue problems, and finally 
connects all the solutions. We conclude that the 
choice of the method depends upon the structure and 
the size of the matrix, on the requirements for speed 
and accuracy, and the available hardware.  
     Using the computers in solving eigenvalue 
problems has lead to two aspects of research: speed 
and accuracy. Due to the need of solving larger and 
larger problems, the first aspect of research is 



finding faster algorithms and the analysis of their 
speed of convergence. The second is the question of 
accuracy: how many accurate digits does the 
computed eigenvalue have?  
     In applications four kinds of errors appear: errors 
of the model, errors in data, errors in storing the 
matrix into the computer, and the errors generated 
by the computational method. When storing the 
matrix H into the computer, instead of the element 
Hij we store the element  
 

    ijij HH δ+ , |||| ijij HH εδ ≤ ,                (2) 
 
where ε  is the machine precision, 810−≈ε  (single 
precision) or 1610−≈ε  (double precision). 
Therefore, the last stored digit need not be correct 
and instead of H we store some HH δ+ . The 
condition is defined as the number κ , which tells us 
how many times does the error in original data 
increase. If λ i is the i-th largest eigenvalue of the 
matrix H, and ii δλλ +  is the i-th largest computed 
eigenvalue, then the answer to the question about 
accuracy generally has the form 
 

|||||||| ii H λδκδλ ⋅⋅≤ .               (3) 
 

     The condition κ  depends on the matrix, but also 
on the computational method, which we use. We 
know that accuracy of the computed eigenvalue 
depends on the following: is the matrix “well-
behaved”, this is, do small relative changes in 
matrix elements cause small relative changes in 
eigenvalues, and if this is the case, which algorithm 
computes eigenvalues with this accuracy. In general, 
to answer the first question an appropriate 
perturbation theory for the given type of problem 
needs to be developed, while the answer to the 
second question is given by the numerical analysis 
of the algorithm.  
     Many authors have noticed that for some 
problems different methods give answers with 
widely varying accuracy. For example, in 1968 
Rosanoff et al. [7] noticed that the Jacobi method 
often computed tiny eigenvalues much more 
accurate than the QR method. The authors had many 
excellent observations and gave interesting 
explanations for facts, which were much later 
established with complete mathematical rigor. In 
1980-ties many articles appear and the intensive 
research is still going on.   

     The symmetric (Hermitian) eigenvalue problem 
was analyzed by Barlow and Demmel [1] for scaled 
diagonally dominant matrices, by Demmel and 
Veselić [2] for positive definite matrices and by 
Veselić and Slapničar [9] for indefinite matrices. 
They proved that different types of matrices written 
above are “well-behaved” matrices. 
 
 
2 Iterative algorithm 
We propose an iterative refinement for the spectral 
decomposition TQQH Λ=  of a given real 
symmetric matrix H of order n. As we know, the 
more accurate Jacobi methods are several times 
slower than the standard methods, based on 
tridiagonalisation.  
     Our aim is, therefore, to solve the problem as 
quickly and as accurately as possible. However, the 
existing algorithms can not satisfy both of these two 
requirements, thus we have to find a compromise, 
which ultimately depends on our priorities. 
     To satisfy the speed requirement, Drmač and 
Veselić [3] suggested to first perform the eigenvalue 
decomposition TQQH Λ=  by using some fast 
method (QR or D&C), then to compute the Rayleigh 
matrix HQQH T='  and finally to refine the solution 
by applying the Jacobi method to the Rayleigh 
matrix. They proved that this algorithm is more 
efficient (faster) then Jacobi method on the initial 
matrix H, while giving the similar relative accuracy 
as the Jacobi method. 
     In this paper we show that we get similar 
accuracy and faster convergence if in the third step 
we substitute Jacobi method with one of the fast 
methods and then iteratively repeat the second and 
the third step until accuracy requirement is satisfied. 
We suggest the following iterative algorithm: 
 

Algorithm 
1. decompose TQQH Λ=  by a fast 

method, 
2. compute the Rayleigh matrix 

HQQH T=' , 
3. if 'H  is not diagonal enough treat it 

again by a fast method TQQH '''' Λ= , 
4. repeat 2. and 3. step for ': QQQ = . 
 



     In the third step of Algorithm (if 'H  is not 
diagonal enough) we use the following stopping 
criterion 
 

   jjiiij DDtolE ⋅⋅≤ ε ,    for all nji ≤≤ ,1 ,    (4) 

 
where )'(HdiagD =  and 0)( =Ediag , if the matrix 

'H  is written as EDH +=' . If condition (4) is not 
fulfilled for all elements of matrix 'H , we must find 
the partition 
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where elements of matrices 11E  and 12E  fulfil the 
condition (4) while elements of matrix 22E  are 
relatively big in comparison with elements of 
matrix 22D . We can find the partition (5) in two 
different ways (for details see [5]): 
 
1. by choosing “bad elements” (those elements 

which do not satisfy the condition (4)) or 
2. by choosing “good elements” (those elements 

which satisfy the condition (4)). 
 
     Although the criterion by choosing good 
elements does not assure that all eigenvalues will be 
improved (some of them can even be spoiled), the 
numerical results show us that this strategy of good 
elements gives the eigensolution with high relative 
accuracy and it is more efficient than strategy of 
bad elements. 
 
 
3 Numerical Experiments 
In this section we present the results of our 
numerical experiments. We tested the Algorithm 
above for different classes of matrices. We generate 
three types of random matrices: 
 

1. indefinite matrices, 
2. positive definite matrices and 
3. scaled diagonally dominant matrices. 

 
     For each dimension of matrix 
( 100,50,32,16,6     =n ) we generate 120 random 
matrices in the first two classes and 40 random 
matrices in the third class. This makes a total of 
1400 different test matrices. 

     For a fast method in the first and the third step of 
Algorithm we use D&C method based on 
tridiagonalisation by Householder’s reflectors (see 
[4]). We also tested QR method instead of D&C 
method and got similar accuracy. Because D&C 
method is quicker than QR we use it as a 
benchmark in further analysis. 
     In the third step of Algorithm we use the 
stopping criterion by choosing good elements. 
Although this criterion does not assure that all 
eigenvalues will be improved (some of them can 
even be spoiled), the numerical results from Table 1 
show us that relative errors of computed 
eigenvalues on the average become smaller. 
     The reference values are computed by Jacobi 
method [8] and are denoted by iλ . The computed 
eigenvalues are denoted by i'λ  and the relative 
error is computed as 

 

         
||

|'|
max

i

ii
ierrorrelative

λ
λλ −

=      .              (6) 

 
     The computed relative errors are given in Table 
1, Table 2 and Table 3. In Table 1 we use the 
following notations: 

- MinHDC: the minimal relative errors for the 
first step of Algorithm, 

- MaxHDC: the maximal relative errors for the 
first step of Algorithm, 

- AveHDC: the average relative errors for the 
first step of Algorithm, 

- AveALG: the average relative errors of 
Algorithm. 

 
 

type dim MinHDC MaxHDC AveHDC AveALG 
6 5,0E-09 5,7E-07 1.01E-07 1.51E-07 

16 2,2E-13 2,3E-04 2.12E-05 8.50E-07 
32 5,8E-15 2,8E-03 1.83E-04 3.18E-06 
50 9,6E-15 8,7E-03 3.04E-04 8.76E-05 

1 

100 2,3E-14 2,1E-02 4.25E-04 9.85E-08 
6 7,3E-16 2,3E-06 3.54E-07 6.75E-08 

16 1,7E-15 2,8E-03 1.85E-04 8.54E-08 
32 4,1E-15 5,9E-03 3.53E-04 2.75E-05 
50 6,0E-15 2,1E-02 6.47E-04 8.41E-05 

2 

100 1,5E-14 2,8E-02 6.63E-04 5.83E-05 
6 2,7E-12 2,5E-05 4.30E-06 5.58E-07 

16 2,6E-13 4,2E-03 9.12E-07 8.00E-10 
32 3,7E-15 4,4E-03 2.80E-06 1.53E-08 
50 5,4E-15 1,6E-02 1.82E-06 3.66E-07 

3 

100 1,3E-14 2,1E-02 2.45E-05 1.54E-06 
 

Table 1 
 



     In Table 2 and Table 3 we use the following 
notations: 
- NImp: the number of improved eigenvalues, 
- MinImp: the minimal relative errors of 

improved eigenvalues, 
- MaxImp: the maximal relative errors of 

improved eigenvalues, 
- NSpo: the number of spoiled eigenvalues, 
- MinSpo: the minimal relative errors of spoiled 

eigenvalues, 
- MaxSpo: the maximal relative errors of spoiled 

eigenvalues. 
 
 

type dim NImp MinImp MaxImp 
6 1,7 1,7E-08 1,8E-08 

16 6,1 9,3E-12 1,7E-05 
32 11,1 1,6E-14 1,9E-05 
50 18,0 2,7E-14 1,8E-04 

1 

100 31,5 2,6E-14 5,5E-06 
6 1,7 8,3E-11 8,5E-11 

16 4,6 3,6E-13 6,3E-07 
32 10,4 8,5E-13 7,5E-04 
50 18,8 7,8E-15 9,0E-06 

2 

100 34,9 1,6E-14 2,5E-03 
6 0,9 2,3E-13 2,0E-09 

16 5,5 8,0E-12 9,4E-07 
32 8,7 6,4E-13 5,6E-04 
50 15,0 1,3E-14 6,7E-06 

3 

100 27,7 5,6E-12 1,9E-03 
 

Table 2 
 

type dim NSpo MinSpo MaxSpo 
6 1,3 8,8E-07 1,3E-06 

16 1,5 4,8E-05 4,8E-05 
32 1,5 9,1E-05 9,2E-05 
50 1,3 2,7E-03 2,7E-03 

1 

100 1,3 9,7E-03 9,7E-03 
6 1,5 1,6E-07 5,5E-07 

16 3,1 1,3E-05 1,3E-05 
32 3,3 6,6E-06 7,5E-06 
50 2,2 1,8E-03 6,0E-03 

2 

100 0,9 1,2E-02 1,3E-02 
6 0,3 2,3E-05 2,3E-05 

16 1,8 1,9E-05 2,0E-05 
32 2,6 2,1E-05 2,2E-05 
50 1,7 1,4E-03 4,5E-03 

3 

100 0,7 9,3E-03 9,8E-03 
 

Table 3 
 
     The timing results for Jacobi method [8] 
(notation TimeJAC) and for our Algorithm 
(notation TimeALG) are given in Table 4. The 
number of iterations is denoted with NumIt. For all 
quantities we give mean value on the respective 
class and dimension of test matrices. 

 
type dim TimeJAC TimeALG NumIt 

6 1,3 2,0 0,9 
16 13,4 11,5 1,0 
32 85,7 59,2 0,9 
50 292,6 183,0 0,9 

1 

100 2099,9 1150,0 0,8 
6 1,2 1,9 1,0 

16 13,2 12,2 1,2 
32 80,3 64,0 1,2 
50 269,6 199,4 1,3 

2 

100 1880,4 1245,7 1,2 
6 1,0 1,4 0,4 

16 8,2 9,8 1,1 
32 45,2 49,7 1,0 
50 145,7 154,6 1,1 

3 

100 1053,5 1013,8 1,0 
 

Table 4 
 
     As we can see from Table 2, we get about 30 % 
improved eigenvalues. Although we get about 8 % 
spoiled eigenvalues (Table 3), we can conclude that 
the maximal relative errors of spoiled values (the 
column MaxSpo of the Table 3) are still smaller 
than maximal relative errors of the initial calculated 
values (the column MaxHDC of the Table 1). This 
means that on the average relative errors become 
smaller as we can see in the last column (AveALG) 
of Table 1. 
     As we can see from Table 4, on the average only 
one iteration of Algorithm is needed for the 
refinement of the eigensolution. Moreover, we can 
conclude that our Algorithm is more efficient than 
Jacobi method. If we compare TimeALG and 
TimeJAC in Tabel 4, we can see that our Algorithm 
brought about 27 % speed up over Jacobi method. 
 
 
4 Conclusion 
Based on results of a series of numerical 
experiments we show that the combination of 
tridiagonalisation by using Householder’s reflectors 
and D&C method, considering the stopping criterion 
by choosing good elements, gives us the most 
efficient (fastest) algorithm, taking into account the 
accuracy requirement.  
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