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Abstract: - For some kinds of linearly constrained optimization problems with unique optimal solution, such 
as linear and convex problems, the single local optimum is also global. However, there are a broad variety of 
problems in which the property of unique solution cannot be simply postulated or verified. The paper presents 
an effective approach for the global linearly constrained optimization problem with continuous objective 
function. With the help of a parametric representation of the feasible region an equivalent unconstrained 
problem is constructed which is much easier to solve. Our aim is to propose a new introduction to global 
optimization, the design of a general solution algorithm that always finds the solution and provides useful 
information such as bounding of the objective function. The algorithm and its applications are presented in the 
context of a numerical example. 
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1   Introduction 
Optimization has been of significant interest and 
relevance in many areas. While the efficient 
computer packages of local solvers have become 
widespread, a major limitation is that there is often 
no guarantee that the generated solutions correspond 
to the global optima [14].   
     Global optimization is concerned with the 
characterization and computation of global minima 
or maxima of nonlinear functions. Such problems 
are widespread in mathematical modeling of real 
world systems for a very broad range of applications 
[23].  
     Standard nonlinear programming techniques 
have not been successful for solving these problems 
because they use only local information and hence 
cannot be expected to provide global optimality 
criteria [18]. Such algorithms usually obtain a local 
minimum that is global only when certain 
conditions are satisfied (such as objective function 

and feasible region being convex). Moreover, the 
problem of checking local optimality for a feasible 
point and the problem of checking if a local 
minimum is strict, are NP-hard problems [24]. 
Another problem regarding global optimization is 
that optimum is often attained at the boundary of 
feasible region and that more than one optimum can 
exist.  
     Active research during the past decades has 
produced a variety of methods for solving global 
optimization problems. The main classes of 
problems for which many algorithms exist are [18] 
concave minimization, reverse convex 
programming, d.c. programming (global 
optimization of functions that can be expressed as a 
difference of two convex functions) and 
Lipschitzian optimization. Some typical approaches 
for solving global optimization problems use 
techniques such as branch and bound, relaxation, 
outer approximation and valid cutting planes. 



Although there are many different algorithms for 
certain classes of problems are known, their 
deficiency is also that sometimes it is difficult to 
classify a problem in the correct class [23]. 
     One of the methods that cover most general 
problems is d.c. programming, since every 
continuous function on a compact (convex) set can 
be approximated by d.c. functions. But in practice it 
is difficult to construct such approximations. 
However, in many special cases of interest, the 
exact d.c. decomposition is already given or easily 
found, see for example [16]. Another general 
approach is Lipschitzian optimization [17], [25]. 
However, the deficiency of this approach is that all 
methods for solving such problems require 
knowledge of a Lipschitzian constant for some of all 
of the functions involved.     
     It this paper we wish to present an alternative 
approach for solving linearly constrained global 
optimization problems that are the subset of general 
global optimization problems. Although the 
structure of this problem is simple, finding a global 
solution - and even detecting a local solution is 
known to be difficult.  
     There are well over 400 different solution 
algorithms for solving different kinds of linearly 
constrained optimization problems. Some of them 
were published recently, for example [7], [9], [20]. 
However, there is not one algorithm superior to 
others in all cases. Moreover, the optimum (local or 
global) may not be unique [3]. Therefore the 
question of finding global solutions to general 
optimization problems is an important one but as yet 
unanswered by general optimization theory in a 
practical way [22, page 34].  
     The paper develops an effective alternative 
approach to solve general continous optimization 
problems with linear constraints. The unified 
approach is accomplished by converting the 
constrained optimization problem to an 
unconstrained optimization problem through a 
parametric representation of its feasible region. 
     As a by-product of the proposed solution 
algorithm, it enables us to compute the tight 
numerical bounds for a continuous objective 
function with the linear constraints. 
     The remainder of this paper is organized as 
follows: In section 2 the problem is formulated and 
section 3 explains the algorithm. To illustrate the 
steps of the algorithm an application is presented in 
section 4 in the context of published numerical 
problem solved by other method, which serves also 

for comparative study purposes. The last section 
contains the conclusions with some useful remarks. 
 
 
2 Problem Formulation  
We want to solve the following problem with linear 
feasible region: 

Problem P: Maximize (x)f   
 subject to: bAx ≤  

where some variables xi have explicit upper and/or 
lower bounds and some are unrestricted in sign, 
where A is nm × matrix, b is m-vector and f is a 
continuous function. Problem P is a subset of a 
larger set of problems known as Continuous Global 
Optimization Problems [25].  
     The feasible region of the problem P is the set of 
points that defines the polyhedron [10], [26]. In the 
proposed solution we need to find all the critical 
points of objective function f inside and at the 
boundaries of the polyhedron.  
     A polyhedron with finite number of vertices can 
be represented in two equivalent ways [4]: H-
representation and V-representation.  
     An H-representation of the polyhedron is given 
by an nm × matrix A and m-vector b: 

{ }.; bAxx  S n ≤ℜ∈=  

     An V-representation of the polyhedron is given 
by a minimal set of M vertices v1, v2,… , vM  and N 
extreme rays w1, w2,… , wN:  
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     A face of polyhedron S is a boundary set of S 
containing points on a line or plane (or hyper-
plane).  
     A vertex of this polyhedron is any of its points 
that can be specified as an intersection of faces. This 
is a point nv ℜ∈  of S that satisfies an affinely 
independent set of n inequalities as equations.  
     An edge of the polyhedron is the line segment 
between any two adjacent vertices. 
     An extreme ray nw ℜ∈  is a direction such that 
for some vertex v and any positive scalar µ, v + µw 
is in S and satisfies some set of (n-1) affinely 
independent inequalities as equations. 
     If a feasible region is bounded then a 
corresponding polyhedron is called a polytope, 



which has no extreme rays. Its V-representation is 
given by the convex combination of the vertices. 
     The parametric representation of the objective 
function f is given by ),()),(x((x) µλµλ fff == . 
     Critical point of a continuous function is a point 
where the first partial derivatives are zero or 
undefined. 
  
 
3   The algorithm 
In the proposed solution algorithm we need to find 
critical points. It is necessary for the domain to be 
an open set for the definition of derivative. 
Therefore, we solve unconstrained problems over 
some relevant open sub-domains of the feasible 
region. First, we find critical points on the interior 
points of the feasible region. Next, we evaluate the 
objective function at the vertices of the feasible 
region. Finally, we find critical points on interior 
points of the faces and edges (i.e., line segments) of 
the feasible region. The global optimal solution is 
found by comparing the functional values at the 
critical points and at the vertices. Therefore, in 
solving an n dimensional problem, we solve some 
unconstrained optimization problems in n, n-1,…, 1 
dimensions. Thus, removing the constraints by the 
proposed algorithm reduces the constrained 
optimization to unconstrained problems, which can 
be more easily dealt with.  
     The following provides an overview of the 
algorithm's process strategy:  

     Phase 1: Find the critical points of the objective 
function and select those, which are feasible by 
checking the constraints. 
     Phase 2: Find the V-representation of the 
feasible region, its edges and faces. Evaluate the 
objective function at the vertices. 
     Phase 3: Find the critical points of the objective 
function over the open domains: faces, edges,… 
Then evaluate the objective function at these points. 
     Phase 4: Pick the global solution and construct 
the numerically tight bounds for the problem. 

     The second phase of the algorithm can be 
implemented by one of the algorithms for finding 
the vertices, extreme rays, edges and faces of the 
polyhedron.  
     There are essentially two main approaches to the 
problem of generating all the vertices of the 
polyhedron, both with the origins in the 1950s. The 
double description method [21] involves building 

the polyhedron sequentially by adding the defining 
inequalities one at a time. Recent algorithms and 
practical implementations of this method have been 
developed by Fukuda and the others [8], [12], [13]. 
     The second method for finding all the vertices 
and extreme rays of the polyhedron involves 
pivoting around the skeleton of the polyhedron. An 
efficient method using this approach is the reverse 
search method by Avis and Fukuda [5] and the 
revisited version [4]. Some other methods are 
described in [6], [10], [19],  [26]. 
     In the third phase of the algorithm we have to 
find the critical points over the open domains. We 
can construct the parametric version of the objective 
function over each domain and look for its critical 
points. But since there may be many such domains it 
is more efficient to use the following result. 
     Suppose that the feasible region is defined by M 
vertices and N extreme rays. We will need partial 
derivatives of the objective function f over each iλ , 

Mi ≤≤1  and each jµ , Nj ≤≤1 . We can find 
them by using the chain-rule: 
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     Then, suppose the open domain is defined by a 
subset of the vertices v1, v2,… , vs  and a subset of 
extreme rays w1, w2,… , wt. To find the critical points 
in this domain we have to find the critical points of 
the parametric objective function over the domain  
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We can construct the Lagrangian 
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In order to find the critical points we have to solve 
the following system: 
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By eliminating c from the system we get 
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     It means that if we are looking for the critical 
points in the open domain defined by a subset of the 
vertices v1, v2,… , vs  and a subset of extreme rays w1, 
w2,… , wt, then we have to solve the above system 
over the domain 0, ≥ji µλ , Mi ≤≤1 , Nj ≤≤1 .  
     In order to find the critical points is some open 
domain we can use the partial derivatives that were 
found once for all the domains.  
     In the last phase of the algorithm we have to 
compare the functional values at the critical points 
and the vertices. We pick the global solution.  
     The proposed algorithm also enables us to 
compute the tight numerical bounds for a 
continuous objective function with the linear 
constraints, because it discovers all critical points 
and vertices that are candidates for global 
minimums and maximums. 
     Not all problems go through all three steps.  For 
example, if we are looking for a maximum, the 
objective function is concave and the interior critical 
point has been found, then we know that this is the 
optimal point.  
 
 
4   Numerical example 
In the following example we demonstrate the 
usefulness of proposed method. It always finds the 
right solution, while it was not find by the other 
methods in many cases, although the problems are 
rather simple. The following quadratic optimization 
with inequality constraint is attempted to solve in 
[11, pages 70-82] using the Wolf Method. 

Max 2
2

2
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subject to:  102 21 ≤+ xx  
 33 21 ≥+ xx  
 0, 21 ≥xx  

     The partial derivatives of the objective function 
are  
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     The gradient vanishes at x1 = -11, x2 = -8 which is 
not feasible. It means that there are no feasible 
interior critical points. 
     The vertices of the feasible region and the 
corresponding objective function values are listed in 
Table 1. 

vertex its coordinates f(x) 
v1 (3,0) -3 
v2 (10,0) -80 
v3 (0,5) -45 
v4 (0,1) -1 

Table1: Vertices and function values for numerical 
example 
 
     The edges of the polyhedron are e1 = (v1, v2), e2 = 
(v2, v3),  e3 = (v3, v4),  e4 = (v1, v4). The parametric 
representation of the feasible region is given by: 

)5,103( 432121 λλλλ ++=),( xx  

where 14321 =+++ λλλλ , 1,,,0 4321 ≤≤ λλλλ . 
     For finding the critical points on the edges we 
will need partial derivatives of f over each λ. By 
using the chain-rule we get: 
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     To find the critical points on the interior of the 
edge e2 = (v2, v3) we have to solve the system 

32

ff
λλ ∂
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∂  

over the domain 132 =+ λλ , 1,0 32 << λλ , 
041 == λλ . We get 

2121 20155302020 xxxx −+=+−  

Since x1 = 10λ2 and x2 = -5λ2 + 5, the critical point 
is x1  = 53/12, x2 = 67/24 with the objective function 
value 13.52. 
     There is one more critical point on the edge e4 = 
(v1, v4) with objective function value 3.05. On the 
remaining edges there are no critical points. 
     Therefore, the optimal solution occurs at x1  = 
53/12, and x2 = 67/24 with an optimal value of 13.52. 
The solution given in the above reference is x1  = 9/8, 
and x2 = 5/8 with objective function value of 47/16 = 
2.94 which is inferior compared with the global 
solution obtained by the proposed approach.  
     Tight bounds of the objective function over the 
feasible region are:  

52.13),f(80 21 ≤≤− xx . 
 
 
5   Conclusion 
We have presented a new solution algorithm for the 
general linearly constrained optimization problems 
with continuous objective function. For a 
polyhedron specified by a set of linear equalities 
and/or inequalities, the proposed solution algorithm 
utilizes its parametric representation. The key to this 
generalized solution algorithm is that the 
constrained optimization problem is converted to an 
unconstrained optimization problem through a 
parametric representation of the feasible region. 
This representation of the feasible region enables us 
to solve a large class of optimization problems.  
     The proposed algorithm favorably compares with 
other methods for this type of problems. Unlike 
other general-purpose solution methods, it 
guarantees globally optimal solutions, it has 
simplicity, potential for wide adaptation, and deals 
with all cases. However, this does not imply that all 
distinction among problems should be ignored. One 
can incorporate the special characteristic of the 
problem to modify the proposed algorithm in 
solving them.  

     The main drawback for the proposed algorithm is 
that all the vertices of the feasible region have to be 
found. The vertex enumeration problem is a hard 
problem even with the recent progress. 
     The main advantages of the presented algorithm 
are that it covers all linearly constrained 
optimization problems and that it always finds the 
optimal solution. There are many problems in the 
literature for which the proposed algorithm finds 
optimal solution and others do not. Some additional 
examples can be found in [2]. 
     Some areas for future research include 
development of possible refinements. An immediate 
work is development of an efficient computer code 
to implement the approach, and performing a 
comparative computational study. 
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