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Abstract. The Wavelet solution for boundary-value problems is relatively new and has 

been mainly restricted to the solutions in data compression, image processing 
and recently to the solution of differential equations with periodic boundary 
conditions. This paper is concerned with the wavelet-based Galerkin solution 
to two-point boundary-value problems involving elliptical problems with non-
periodic boundary conditions. The wavelet method can offer several 
advantages in solving the boundary-value problems than the traditional 
methods such as Fourier series, Finite Differences and Finite Elements by 
reducing the computational time near singularities because of its multi-
resolution character. In order to demonstrate the wavelet technique to non-
periodic boundary value problems, we extended our prior research of solution 
of parabolic problems to two elliptical problems, the one-dimensional 
Helmholtz Equation and a two-dimensional elliptical equation. The results of 
the wavelet solutions are examined and they are found to compare favorably 
to the exact solutions. This paper on the whole indicates that the wavelet 
technique is a strong contender for solving two point boundary value 
problems with non-periodic conditions involving elliptical problems. 

 
 
0. Introduction.  
   

  The term “wavelet” denotes a function, defined on domain R, which, 
when subjected to fundamental operations of shifts (i.e., translation by integers) and 
dyadic (two fold) dilation (act of expanding), yields an orthogonal basis of L2R.  That is, 
the functions    

( ) ( )kxx mm

km −= 22 2
, φφ  

form a complete orthogonal system for L2R with the usual inner product and also has 
compact support, whereφ  is the fundamental scale function. The wavelet expansion for a 
function  f  takes the form 

( ) ( )xCxf km
k

km ,, φ∑=  

The coefficients are defined as  
( ) ( )dxxxfC kmkm ,, φ∫=  
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  Now, from the definition of wavelets we need to know what a scale 
function is? The scale function is given as the solution of the (recursive) dilation or scale 
equation: 
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  The ‘N’ here represents the number of filter coefficients and is named 
after the inventor, Ingrid Daubechies. Throughout we will use the Daubechies scale 
functions D6 (N=6). The filter coefficients are the ones, which define the scaling 
function. For more about Daubechies wavelets and their properties consult Drake [7]. 
 

 With the brief introduction to basics of the wavelets, we now briefly 
describe their application areas.  In the areas of time series analysis, matrix compression, 
and approximation theory, wavelets have carved out a practical niche. In the solution of 
differential equations, however, wavelets have not, thus far, been able to replace other 
more traditional techniques such as Fourier analysis and Finite differences. When we talk 
about PDEs, wavelet basis functions have many properties that make them desirable as a 
basis for a Galerkin approach: they are orthonormal, with compact support, and their 
connection coefficients (that is, integrals of products of basis functions, with or without 
derivatives) can be computed [1][2]. Even though some work has been done on applying 
Wavelet-Galerkin method for the solution of time-independent differential equations with 
periodic conditions, little if any, work has been done to solve the differential equations 
with non-periodic boundary conditions. We had applied this technique successfully to 
parabolic equations [9] with non-periodic boundary conditions. We now extend that work 
to one-dimensional Helmholtz Equation and a two-dimensional two-point boundary value 
elliptical equation, for investigation. In the first case we solve a problem with the 
Helmholtz Equation and in the other case we investigate the solution to a two-point 
boundary value problem involving elliptic equations. This research serves as a basis for 
future solution of non-linear and singular problems where obtaining the exact solution is 
not possible. 
 
1. Problem 1. 

  In the first case, we will consider a problem involving an elliptic 1-D 
partial differential equation, Helmholtz Equation. The equation is given by 

Uxx + αU = f , 0 ≤ x ≤ 1 .  .  .  .  .  .  .  .  .  . 1.1 
Considering  f = 1, we get 

    Uxx + αU = 1    .  .  .  .  .  .  .  .  .  . 1.2 
BOUNDARY CONDITIONS: 

U (0) = 0                .  .  .  .  .  .  .  .  .  . 1.3a 
U (1) = 1                .  .  .  .  .  .  .  .  .  . 1.3b 

 
Solution: 

  Although exact solution exists in literature, our purpose is to find the 
approximate solution with wavelets in order to establish the wavelet theory for the 
solution of the elliptic boundary value problems with non-periodic boundary conditions. 
Once established this will pave the way for solving non-linear and singular problems. 



Wavelet Based Galerkin’s Solution 
We attempt to apply the Galerkin’s approach to the wavelet 

solution of the problem, which involves assuming an approximate solution in terms of 
orthogonal basis and then making the differential and boundary residuals zero. Here we 
shall transform the problem in wavelet space as follows: 

Changing of Variables: 
To transform back and forth from the physical space to the wavelet 

space we make the following substitution: 
Let      y=2mx  when  x = 0, y = 0; x = 1, y = 2m = N-1 
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where N is the Daubechies number[1]. 
Substituting these into our main equation (1.2) results in, 

122 =+ UU yy
m α      .  .  .  .  .  .  .  .  .  . 1.4 

Let ( ) ( )yWyU k
k

kφ∑= , ( ) ( )[ ]1,1 −−−∈∀ NNk ,   .  .  .  .  .  .  .  .  .  . 1.5 

be the wavelet approximate solution. 
Substituting the above assumption (1.5) in equation 1.4, we get the differential residual 
as: 

( ) ( ) 01" ≠−+⇒ ∑∑ yWyWQ k
k

kk
k

k φφ   where mQ 22
α

= .  .  .  .  .  . 1.6 

and the boundary residuals as, 
( ) 00 ≠∑ k

k
kW φ ,       .  .  .  .  .  .  .  .  . 1.7a

 ( ) 11 ≠−∑ NW k
k

kφ   ( ) ( )[ ]1,1 −−−∈∀ NNk     .  .  .  . 1.7b 

 As the Galerkin method tries to make the differential residuals zero, we 
orthogonalize residuals with basis functions, i.e., we multiply (1.6) with ( )yjφ  and 
integrate from [0, N-1], we get the following differential equations: 

010200 =−Ω+Ω⇒ ∑∑ jk
k

kjk
k

k WWQ   .  .  .  .  .  .  .  .  .  . 1.8 

where mQ 22
α

= , ( ) ( )[ ]1,1, −−−∈∀ NNkj  and 

Connection coefficients [2], ( ) ( )dyyy d
j

N
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i
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  Now, in a similar fashion, Galerkin approximation attempts to find 
boundary equations by orthogonalizing the respective boundary residuals with respect to 
basis functions. Thus the resulting boundary equations are: 



( ) 00 =∑ k
k

kW φ ,     .  .  .  .  .  .  .  .  . 1.9a

 ( ) 11 =−∑ NW k
k

kφ  ( ) ( )[ ]1,1 −−−∈∀ NNk     .  .  .  .  .  .  .  . 1.9b 

  So, here, we have got a set of nine differential equations (1.8) and two 
boundary equations (1.9) forming a differential-algebraic system. Substituting the two 
algebraic equations in place of top and bottom differential equations, we get a 9x9 
differential algebraic system, which can be represented as, 
       DBYAY =+         .  .  .  .  .  .  .  .  .  . 1.10 

where A = 
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      D = [ ]1;0;0;0;0;0;0;0;0 is the constant matrix involving the right- 
   hand terms in boundary equations, 
      Y :  is the 9x1 vector of unknowns, i.e. Wk , ( ) ( )[ ]2,2 −−−∈∀ NNk  
  Once the above equation (1.10) is solved, we get a set of Wk’s, which when 
substituted in equation (1.5), gives us the approximate solution. The approximate solution 
for Equation (1.1) is computed independently and plotted using MATLAB, a technical 
computing software package. 
   
Exact Solution:    
   The exact solution of Equation 1.1 is: 
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Results and Discussion: 
    The plot for the approximate solution is given in Figure 1.1a. The 
exact solution for Helmholtz equation has been plotted (Figure 1.1b). The resulting 
matches between the graphs indicate that the wavelet method is a viable alternative for 
solving elliptical two-point boundary value problems with non-periodic boundary 
conditions. 
 
2. Problem 2. 

 In the second case, we consider a two-point two-dimensional elliptical boundary 
value problem: 
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 10,10 ≤≤≤≤ yx  .  .  .  .  .  .  .  .  .  . 2.1 

where 
f = -2 and g = 0 
 

BOUNDARY CONDITIONS: 
 U (x, 0) = 0  U (x, 1) = 1; 
 U (0, y) = 0  U (0, y) = 1;    .  .  .  .  .  .  .  .  .  . 2.2 
 
Solution: 

 Although exact solution exists in literature, our purpose is to find the 
approximate solution with wavelets in order to establish the wavelet theory for the 
solution of the boundary value problems with non-periodic boundary conditions. Once 
established this will pave the way for solving non-linear and singular problems. 

Wavelet Based Galerkin’s Solution 
We attempt to apply the Galerkin’s approach to the wavelet 

solution of the problem, which involves assuming an approximate solution in terms of 
orthogonal basis and then making the differential and boundary residuals zero. Here we 
shall transform the problem in wavelet space as follows: 

Changing of Variables: 
To transform back and forth from the physical space to the wavelet 

space we make the following substitution: 
Let      z=2mx  when  x = 0, z = 0; x = 1, z = 2m = N-1 
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Substituting these into our main equations (2.1) results in  
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Let ( ) ( ) ( )zyWyzU k
k

k φ∑=, , ( ) ( )[ ]1,1 −−−∈∀ NNk  be the wavelet approximate 

solution.  
Substituting the above assumption in equation (2.3), we get the differential residual as: 
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To make the differential residual zero, we orthogonalize the above equation with basis 
functions, i.e., we multiply with ( )zjφ  and integrate from [0, N-1], we obtain the 
differential equation as:    
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where ( ) ( )[ ]1,1, −−−∈∀ NNkj , Connection coefficients [2], ( ) ( )dyyy d
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Now, in a similar fashion, orthogonalizing the respective boundary residuals yields us the 
following boundary equations, 

( ) ( ) 00 =∑ k
k

k yW φ , ( ) ( ) 11 =−∑ NyW k
k

k φ     .  .  .  .  .  .  .  .  .  . 2.5a 

( ) ( ) 00 =∑ ZW k
k

k φ , ( ) ( ) 11 =−∑ ZNW k
k

k φ    .  .  .  .  .  .  .  .  .  . 2.5b 

So, here, we have got a set of nine differential equations (2.4) and two sets of 
algebraic equations (boundary conditions) (2.5) defining x and y at both the ends. Here, 
we replace the top and bottom differential equations with boundary equations defining x, 
thus forming a square differential algebraic system, which can be represented as: 

DYYY =−+ γβα "    .  .  .  .  .  .  .  .  .  . 2.6 

where  α : 
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D : [ ]1;0;0;0;0;0;0;0;0  is the constant matrix involving the 
      constants in the boundary equations. 
Y   is the 9x1 vector of the unknowns, i.e., Wk , ( ) ( )[ ]2,2 −−−∈∀ NNk  

 
Central Differencing Technique: 

To solve the above-mentioned differential algebraic system, Equation 2.6, 
 we apply Central difference technique. 
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where 
   ( ) βαγ 22 +∆−= hA  and 
    h is the uniform spacing y∆ for y variable. 
  



On expanding equation (2.7), for different values of h, (0<h<1), at the interval of 0.1, we 
get nine equations in which we know the values of y0 and y10, which are nothing but the 
boundary conditions of y. So, when we represent all the nine equations in matrix form, 
we get, 

dMZ =    .  .  .  .  .  .  .  .  .  . 2.8 
where 
 M is the coefficient matrix of y [Appendix-I]. 
 Z is the unknown vector [Appendix-I]. 
 d is the matrix containing the right hand side of the equations  [Appendix-I]. 
 
Results and Discussion: 
    The approximate solution, Equation (2.8), is computed 
independently and plotted using MATLAB, a technical computing software package. The 
numerical solution is plotted in MATLAB using the PDE Tool box and is as shown in the 
Figure 2.1a, 2.2a. Figure 2.1a shows the flat color plot where the color scale indicates the 
height, while Figure 2.2a shows the 3-D plot. The plots for the approximate solution are 
shown in Figure 2.1b and 2.2b. The resulting matches between the graphs indicate that 
the wavelet method is a viable alternative for solving elliptical non-periodic two-point 
boundary value problems. 
 
3. Conclusion. 

   From the above cases, the wavelet method has been shown to be a 
powerful tool for the study of solution of elliptic partial differential equations with non-
periodic boundary conditions. The approximate solutions obtained using Daubechies 
Wavelet Coefficients (N = 6) have been compared with the available exact solutions and 
found to match very well. In some cases, the wavelet solutions have been found to 
converge much faster than the exact solution. Although wavelet approximate solutions in 
general require slightly more computational effort than the exact solutions, the gains in 
accuracy, particularly with the higher order wavelets, far outweigh the increase in cost. 
Furthermore wavelets have the capabilities of representing solutions at different levels of 
resolution, which makes then particularly useful for developing hierarchical solutions to 
engineering problems. 
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Appendix-I 
 
M = [ 
    -A   beta zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9); 
    beta -A  beta  zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9); 
    zeros(9,9) beta -A  beta zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9); 
    zeros(9,9) zeros(9,9) beta -A  beta zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9); 
    zeros(9,9) zeros(9,9) zeros(9,9) beta -A  beta zeros(9,9) zeros(9,9) zeros(9,9); 
    zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) beta -A  beta zeros(9,9) zeros(9,9); 
    zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) beta -A  beta zeros(9,9); 
    zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) beta -A  beta; 
    zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) zeros(9,9) beta -A; 
]; 
 
 
Z = [y1; y2; y3; y4; y5; y6; y7; y8; y9], where yi = [Wk] ( ) ( )[ ]2,2 −−−∈∀ NNk  
 
 
d = [D-(beta*y0);D;D;D;D;D;D;D;D-(beta*y10)]; 
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