

1

Safety Relevant Design of a Fuzzy Controller

Gerhard H. Schildt
Senior member of IEEE
Daniela Kahn
Institute for Automation;Vienna University of Technology
Treitlstr. 1/183-1, A-1040 Vienna, Austria
Tel.: 0043-1-58801-18311, Fax: 0043-1-58801-18391

Keywords: Safety terms, , fail-safe system design, V&V aspects, fundamental safety principles

Abstract. After an introduction into safety terms a fuzzy controller for safety related process
control will be presented. One can show that the size of necessary rules is relatively small. Thus,
there exists a real chance for verification and validation of software due to the fact that the
whole software can be structured into standard fuzzy software (like fuzzyfication, inference
algorithms, and defuzzyfication), real-time operating system software, and the contents of the
rule base. Furthermore, there is an excellent advantage due to real-time behavior, because
program execution time is much more planable than for conventional PID-controller software.
Additionally, up to now special know-how does exist to prove stability of fuzzy controller.
Hardware design has been done due to fundamental principles of safety technique like watch
dog function, dynamization principle, and quiescent current principle.

1. Introduction.

 For vital prozess control safety critical devices and control systems are used. Up
to now there is a certain threshold to apply software driven systems, because software
will never be error-free. But, nevertheless all over the world engineers are looking for
new approaches to use software driven systems for vital process control. To describe
safety critical systems at first some terms of safety technique shall be introduced:

 safety critical system: control system causing no hazard to people of material in

case of environmental influence or system failure.
 safety: property of an item to cause no hazard under given conditions during a

given time; i.e. avoidance of undue fail conditions. (e.g. Undue fail conditions
may be caused by technical system failures or malfunction of an electronic
device interfered by electromagnetic noise).

 hazard: state of a system that cannot be controlled by given means and may lead
to damages to persons.

 safe system state: property of a system state to cause no hazard to people or
material

 fail-safe: technical failures within an item may lead to fail states, which however
have to be safe.

 Because, up to now no fail-safe one-channel computer for vital process control is
available, one has to choose a configuration of at least two computers running
parallely. In this system configuration results of both channels are to be fed to a fail-
safe comparator, whose output enables a safe gate in case of equivalent results,
represented by corresponding command telegrams to be fed to the technical process.
Because of availability aspects one normally applies a three-channelled system with (2
of 3)-voter, so that the system configuration normally runs with all three channels
parallely, in case of failure or maintenance of one channel a degraded mode of
operation is possible.

 Additionally, diversity principle is applied in the field of vital process control.
Diversity may be defined as follows:

2

"Existence of different means to perform a required function"

(e.g. different physical principles, different approaches to implement the same task,
different algorithms) /1/.

Basically, there are typical problems due to diverse system design like

 sufficient diversification within a n-version system (to be proved)
 unplanable waiting times for results/command telegrams that are to be compared
 certain tolerance zone management when comparing measured values, results,

or command telegrams.

 Therefore, it is an essential challenge to design a one-channelled software
system running on a three-channelled hardware in order to manage hardware failures
or electromagnetic interference.

2. Fuzzy Controller

 We designed a fuzzy controller with an architecture as displayed in Fig. 1. At the
input side, there is a condition interface producing fuzzy equivalents of several input
variables. They are then fed to an inference engine cooperating with a rule base. The
outputs from the inference engine are fuzzy results provided to an action interface,
which finally performs defuzzyfication and process actuation.

- +

u(t)

Fuzzy Controller

Fuzzy-
fication

Defuzzy-
fication

Inference
Engine

Rulebase

Technical
Process

Measurement
Recording

w(t) e(t)

y(t)

Fig.1 Fuzzy Controller

3

 Analogue input signals, such as temperature, pressure, water level and so on are
provided to the controller, however not directly, but as an error and deviation of error.

2.1 Fuzzyfication process

 The variables error and deviation of error are then fed to the condition interface,
whose function is to fuzzify the input values. Since mappings from these input data to
values of fuzzy variables can be freely selected, we choosed triangular membership
functions because of simple description in a ROM (Figure 2).

nl nm ns z ps pm pl

x

µ(x)

Fig.2: Membership Funktion

 If one uses simple triangles, they are easy to describe in source code. For
example , for P_LARGE the description can be written as (@0.6, 0, @1.0, 1, @1.4, 0),
and for ZERO the description can be written as (@-0.3, 0, @0.0, 1, @0.3, 0), and so
on. Note that all values of variables here are normalized into the range of /-1,1/ or
/0,1/.

2.2 Inference engine

 The main component of the controller is the inference engine. It is operated
under a strictly cyclic regime, such as in a programmable logic controller (PLC). In
contrast to the latter, however, each loop execution takes exactly the same time,
because the same operations are carried out in every iteration. Thus, the controller´s
real-time behaviour is fully deterministic and easily predictable. Every loop execution
comprises three steps: (1) input data generation by analogue-to-digital conversion in
the condition interface, (2) inference by determing appropriate control rules and (3)
control actuation via digital-to-analogue converters in the action interface. These steps
as well as the overall operation cycle are strictly synchronized with a system clock.

2.3 Rule base

 The rule base contains a set of rules R1, R2, ..., Rn. These rules form the expert
knowledge how to control the technical process and can be described as follows:

Rk : IF pk(e) THEN ck(u)

with pk premise
 ck conclusion
 e error
 u output value

 Necessary adaptation of fuzzy controller towards technical process may be done
by modifying the contents of rule base. Additionally, there is a real good chance of
tuning the real-time behaviour of the controller by modifying defined membership
functions. There is an essential advantage of applying a fuzzy controller because of its

4

planable real-time behaviour. Instead of calculation of high sophisticated differential
equations some rules may fire. Due to a certain strategy conclusions can be derived
easily.

 Another essential advantage is the transparency of rule base, so that even an
expert without any computer science is able to validate the rule set.

 The rule set should be implemented as ROM or PROM for safety reasons. A
special development platform was used to generate a definition section and rule base
section /2/. Figure 3 shows both sections for an example of a combined temperature-
steam pressure controller.

FIU Source Code

 $ FILENAME: temp/temp3.fil
 $ DATE: 09/18/1998
 $ UPDATE: 09/23/1998

 $ Temperature controller: Three inputs, two outputs
 $ INPUT(S): Error, Var(iationOf)_Error, Pressure
 $ OUTPUT(S): Var(iationOf)_Heater, Var(iationOf)_Cooling(Valve)

 $ FIU HEADER
 fiu tvfi (min max)*8;

 $ DEFINITION OF INPUT VARIABLE(S)
 invar Error " " : -1.0 () 1.0 [
 P_Large (@0.6, 0, @1.0, 1)
 P_Medium (@0.3, 0, @0.6, 1, @1.0, 0)
 P_Small (@0.0, 0, @0.3, 1, @0.6, 0)
 Zero (@-0.3,0, @0.0, 1, @0.3, 0)
 N_Small (@-0.6,0, @-0.3,1, @0.0, 0)
 N_Medium (@-1.0,0, @-0.6,1, @-0.3,0)
 N_Large (@-1.0,1, @-0.6,0)

];
 invar Var_Error " " : -1.0 () 1.0 [
 P_Large (@0.6, 0, @1.0, 1)
 P_Medium (@0.3, 0, @0.6, 1, @1.0, 0)
 P_Small (@0.0, 0, @0.3, 1, @0.6, 0)
 Zero (@-0.3,0, @0.0, 1, @0.3, 0)
 N_Small (@-0.6,0, @-0.3,1, @0.0, 0)
 N_Medium (@-1.0,0, @-0.6,1, @-0.3,0)
 N_Large (@-1.0,1, @-0.6,0)

];
 invar Pressure " " : 0.0 () 1.0 [
 Large (@0.5, 0, @1.0, 1)
 Medium (@0.0, 0, @0.5, 1, @1.0, 0)
 Small (@0.0, 1, @0.5, 0)
];

 $ DEFINITION OF OUTPUT VARIABLE(S)
 outvar Var_Heater " " : -1.0 () 1.0 * (
 P_Large = 0.8,
 P_Medium = 0.4

5

 P_Small = 0.2
 Zero = 0.0
 N_Small = -0.2
 N_Medium = -0.4
 N_Large = -0.8

);

 outvar Var_Cooling " " : -1.0 () 1.0 * (
 P_Large = 0.8,
 P_Medium = 0.4
 P_Small = 0.2
 Zero = 0.0
 N_Small = -0.2
 N_Medium = -0.4
 N_Large = -0.8
);

$ RULES

if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small
if Error is P_Small

and Var_Error is N_Large
and Var_Error is N_Medium
and Var_Error is N_Medium
and Var_Error is N_Small
and Var_Error is N_Small
and Var_Error is N_Large
and Var_Error is N_Large
and Var_Error is N_Medium
and Var_Error is N_Medium
and Var_Error is N_Small
and Var_Error is N_Small
and Var_Error is N_Large
and Var_Error is N_Large
and Var_Error is N_Medium

and Pressure is Large
and Pressure is Large
and Pressure is Large
and Pressure is Large
and Pressure is Large
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Small
and Pressure is Small
and Pressure is Small

then Var_Cooling is Zero;
then Var_Heater is H_Medium;
then Var_Cooling is Zero;
then Var_Heater is N_Small;
then Var_Cooling is Zero;
then Var_Heater is N_Small
then Var_Cooling is Zero;
then Var_Heater is N_Small;
then Var_Cooling is Zero;
then Var_Heater is Zero;
then Var_Cooling is Zero;
then Var_Heater is Zero;
then Var_Cooling is Zero;
then Var_Heater is Zero;

 :

 :

 if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large
if Error is P_Large

and Var_Error is P_Medium
and Var_Error is P_Small
and Var_Error is P_Small
and Var_Error is P_Large
and Var_Error is P_Large
and Var_Error is P_Medium
and Var_Error is P_Medium
and Var_Error is P_Small
and Var_Error is P_Small
and Var_Error is P_Large
and Var_Error is P_Large
and Var_Error is P_Medium
and Var_Error is P_Medium
and Var_Error is P_Small
and Var_Error is P_Small

and Pressure is Large
and Pressure is Large
and Pressure is Large
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Medium
and Pressure is Small
and Pressure is Small
and Pressure is Small
and Pressure is Small
and Pressure is Small
and Pressure is Small

then Var_Coolings is N_Large;
then Var_Heater is P_Medium;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;
then Var_Heater is P_Large;
then Var_Coolings is N_Large;

Figure 3: Definition section and rule base section

 We found out, that for sufficient process control the size of rule base is limited

6

to a bounded number of rules (e.g. 86 rules only). This is an essential advantage for
V&V process.

2.4 Defuzzyfication Process

 Because an actuator needs a discrete value for operation, a certain
defuzzyfication strategy has to be applied. Usual methods of defuzzyfication are

MAX_HEIGHT
MEAN_OF_MAXIMA
CENTER_OF_GRAVITY

 We decided to implement the center of gravitiy strategy because of its efficient
control behaviour /3/.

3. Safety Features of Fuzzy Controller

 In safety technique there exist certain fundamental principles like dynamization
principle, monitoring function, watchdog function, quiescent current principle.

 So, we decided to implement these principles into our design for a safety-critical
fuzzy controller. After input values have been transformated to fuzzy values by
fuzzyfication process certain scanner checks, if one or more rules fire. In case of an
unplanned stop of the scanner the dynamic monitoring component consisting of a very
simple and passive hardware disables a safe gate so that no command telegrams are
fed to the technical process (figure 4).

7

Figure 4: Safety components for a fuzzy controller

 An additional watch dog function module disables a safe gate due to stopped
scanner or because no rule has fired at all after a well-defined time interval. Thus, the
technical process changes over to a well-defined safe system state (shutdown). As
much as possible detailled functions have to be implemented in simple and passive
hardware because of V & V reasons.

4. V & V aspects

 Because it is not possible to implement the whole functionality in hardware a
one-channelled software remains that has to be validated. Figure 5 shows the
necessary software structure comprising the Operating System Software, the so-called
Standard Fuzzy Software, and a Rule Base.Operating system software and standard
fuzzy software have to be validated only once, however for each new application one
needs a V & V licensing process for the rule base.

only one
Validation

Only one
validation

validation
for each

application

Figure 5: Software structure of safety critical fuzzy controller

Operating System Software

Standart Fuzzy Software
(fuzzy controling)

 -fuzzyfikation
 -indifference Strategy
 -defuzzyfikation

Rule Base

8

5. Conclusions

 A fuzzy controller for safety critical process control was described. We implemented
fundamental principles of safety technique like dynamization principle, monitoring
function and watch dog function into a special fuzzy controller design. Hardware and
software aspects have been discussed. We recognize not only better chances for V & V
process, but also a better real-time behaviour of such a knowledge based system. Up to
now some theoretical knowledge for stability proof is available so that we see a real
good chance for applying a fuzzy controller in the field of safety critical process
control.

References:

/1/ G.H. Schildt: "On Diverse Programming for Vital Systems",
 IFAC - Proceedings on Safety of Computer Control
 Systems, 1989

/2/ APTRONIX INC.: “FIDE Application Note 006-980914”, San Jose, CA, USA
 1998

/3/ G.H.Schildt, W. Kastner: „Prozessautomatisierung“, Springer-Verlag Wien New

York, 1998

