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Abstract. After an introduction into safety terms a fuzzy controller for safety related process 
control will be presented. One can show that the size of necessary rules is relatively small. Thus, 
there exists a real chance for verification and validation of software due to the fact that the 
whole software can be structured into standard fuzzy software (like fuzzyfication, inference 
algorithms, and defuzzyfication), real-time operating system software, and the contents of the 
rule base. Furthermore, there is an excellent advantage due to real-time behavior, because 
program execution time is much more planable than for conventional PID-controller software. 
Additionally, up to now special know-how does exist to prove stability of fuzzy controller. 
Hardware design has been done due to fundamental principles of safety technique like watch 
dog function, dynamization principle, and quiescent current principle. 
 
1. Introduction.  
 
 For vital prozess control safety critical devices and control systems are used.  Up 
to now there is a certain threshold to apply software driven systems, because software 
will never be error-free. But, nevertheless all over the world engineers are looking for 
new approaches to use software driven systems for vital process control. To describe 
safety critical systems at first some terms of safety technique shall be introduced: 
 
 safety critical system: control system causing no hazard to people of material in 

case of environmental influence or system failure. 
 safety: property of an item to cause no hazard under given conditions during a 

given time; i.e. avoidance of undue fail conditions. (e.g. Undue fail conditions 
may be caused by technical system failures or malfunction of an electronic 
device interfered by electromagnetic noise). 

 hazard: state of a system that cannot be controlled by given means and may lead 
to damages to persons. 

 safe system state: property of a system state to cause no hazard to people or 
material 

 fail-safe: technical failures within an item may lead to fail states, which however 
have to be safe. 

 
 
 Because, up to now no fail-safe one-channel computer for vital process control is 
available, one has to choose a configuration of at least two computers running 
parallely. In this system configuration results of both channels are to be fed to a fail-
safe comparator, whose output enables a safe gate in case of equivalent results, 
represented by corresponding command telegrams to be fed to the technical process. 
Because of availability aspects one normally applies a three-channelled system with (2 
of 3)-voter, so that the system configuration normally runs with all three channels 
parallely, in case of failure or maintenance of one channel a degraded mode of 
operation is possible. 
 
 Additionally, diversity principle is applied in the field of vital process control. 
Diversity may be defined as follows: 



 
2

 
"Existence of different means to perform a required function" 
 
(e.g. different physical principles, different approaches    to implement the same task, 
different algorithms) /1/. 
 
Basically, there are typical problems due to diverse system design like 
 
 sufficient diversification within a n-version system (to be proved) 
 unplanable waiting times for results/command telegrams that are to be compared 
 certain tolerance zone management when comparing measured values, results, 

or command telegrams. 
 
 Therefore, it is an essential challenge to design a one-channelled software 
system running on a three-channelled hardware in order to manage hardware failures 
or electromagnetic interference. 
 
 
 
2. Fuzzy Controller 
 
 We designed a fuzzy controller with an architecture as displayed in Fig. 1. At the 
input side, there is a condition interface producing fuzzy equivalents of several input 
variables. They are then fed to an inference engine cooperating with a rule base. The 
outputs from the inference engine are fuzzy results provided to an action interface, 
which finally performs defuzzyfication and process actuation. 
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Fig.1 Fuzzy Controller 
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 Analogue input signals, such as temperature, pressure, water level and so on are 
provided to the controller, however not directly, but as an error and deviation of error. 
 
 
2.1 Fuzzyfication process 
 
 The variables error and deviation of error are then fed to the condition interface, 
whose function is to fuzzify the input values. Since mappings from these input data to 
values of fuzzy variables can be freely selected, we choosed triangular membership 
functions because of simple description in a ROM (Figure 2). 
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Fig.2: Membership Funktion 
 
 
 If one uses simple triangles, they are easy to describe in source code. For 
example , for P_LARGE the description can be written as (@0.6, 0, @1.0, 1, @1.4, 0), 
and for ZERO the description can be written as (@-0.3, 0, @0.0, 1, @0.3, 0), and so 
on. Note that all values of variables here are normalized into the range of /-1,1/ or 
/0,1/. 
 
2.2 Inference engine 
 
 The main component of the controller is the inference engine. It is operated 
under a strictly cyclic regime, such as in a programmable logic controller (PLC). In 
contrast to the latter, however, each loop execution takes exactly the same time, 
because the same operations are carried out in every iteration. Thus, the controller´s 
real-time behaviour is fully deterministic and easily predictable. Every loop execution 
comprises three steps: (1) input data generation by analogue-to-digital conversion in 
the condition interface, (2) inference by determing appropriate control rules and (3) 
control actuation via digital-to-analogue converters in the action interface. These steps 
as well as the overall operation cycle are strictly synchronized with a system clock. 
 
2.3 Rule base 
 
 The rule base contains a set of rules R1, R2, ..., Rn. These rules form the expert 
knowledge how to control the technical process and can be described as follows: 
 
Rk :  IF pk(e) THEN ck(u) 
 
with pk premise 
 ck conclusion 
 e error 
 u output value 
 
 Necessary adaptation of fuzzy controller towards technical process may be done 
by modifying the contents of rule base. Additionally, there is a real good chance of 
tuning the real-time behaviour of the controller by modifying defined membership 
functions. There is an essential advantage of applying a fuzzy controller because of its 
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planable real-time behaviour. Instead of calculation of high sophisticated differential 
equations some rules may fire. Due to a certain strategy conclusions can be derived 
easily. 
 
 Another essential advantage is the transparency of rule base, so that even an 
expert without any computer science is able to validate the rule set. 
 
 The rule set should be implemented as ROM or PROM for safety reasons. A 
special development platform was used to generate a definition section and rule base 
section /2/. Figure 3 shows both sections for an example of a combined temperature-
steam pressure controller. 
 
 
FIU Source Code 
 
 $ FILENAME: temp/temp3.fil 
 $ DATE:  09/18/1998 
 $ UPDATE: 09/23/1998 
 
 $ Temperature controller: Three inputs, two outputs 
 $  INPUT(S):  Error, Var(iationOf)_Error, Pressure 
 $ OUTPUT(S): Var(iationOf)_Heater, Var(iationOf)_Cooling(Valve) 
 

 $ FIU HEADER 
 fiu tvfi (min max)*8; 
 

 $ DEFINITION OF INPUT VARIABLE(S) 
 invar Error " " : -1.0 () 1.0 [ 
  P_Large  (@0.6, 0, @1.0, 1) 
  P_Medium  (@0.3, 0, @0.6, 1, @1.0, 0) 
  P_Small  (@0.0, 0, @0.3, 1, @0.6, 0) 
  Zero  (@-0.3,0, @0.0, 1, @0.3, 0) 
  N_Small  (@-0.6,0, @-0.3,1, @0.0, 0) 
  N_Medium  (@-1.0,0, @-0.6,1, @-0.3,0) 
  N_Large  (@-1.0,1, @-0.6,0) 

  ]; 
 invar Var_Error " " : -1.0 () 1.0 [ 
  P_Large  (@0.6, 0, @1.0, 1) 
  P_Medium  (@0.3, 0, @0.6, 1, @1.0, 0) 
  P_Small  (@0.0, 0, @0.3, 1, @0.6, 0) 
  Zero  (@-0.3,0, @0.0, 1, @0.3, 0) 
  N_Small  (@-0.6,0, @-0.3,1, @0.0, 0) 
  N_Medium  (@-1.0,0, @-0.6,1, @-0.3,0) 
  N_Large  (@-1.0,1, @-0.6,0) 

  ]; 
 invar Pressure " " : 0.0 () 1.0 [ 
  Large  (@0.5, 0, @1.0, 1) 
  Medium  (@0.0, 0, @0.5, 1, @1.0, 0) 
  Small  (@0.0, 1, @0.5, 0) 
  ]; 
 

 $ DEFINITION OF OUTPUT VARIABLE(S) 
 outvar Var_Heater " " : -1.0 () 1.0 * ( 
  P_Large  =  0.8, 
  P_Medium  =  0.4 
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  P_Small  =  0.2 
  Zero  =  0.0 
  N_Small  = -0.2 
  N_Medium  = -0.4 
  N_Large  = -0.8 

  ); 

 outvar Var_Cooling " " : -1.0 () 1.0 * ( 
  P_Large  =  0.8, 
  P_Medium  =  0.4 
  P_Small  =  0.2 
  Zero  =  0.0 
  N_Small  = -0.2 
  N_Medium  = -0.4 
  N_Large  = -0.8 
  ); 
 
 
 
$ RULES 

 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 
if Error is P_Small 

and Var_Error is N_Large 
and Var_Error is N_Medium 
and Var_Error is N_Medium 
and Var_Error is N_Small  
and Var_Error is N_Small  
and Var_Error is N_Large 
and Var_Error is N_Large 
and Var_Error is N_Medium 
and Var_Error is N_Medium 
and Var_Error is N_Small  
and Var_Error is N_Small  
and Var_Error is N_Large 
and Var_Error is N_Large 
and Var_Error is N_Medium 

and Pressure is Large 
and Pressure is Large 
and Pressure is Large 
and Pressure is Large 
and Pressure is Large 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Small 
and Pressure is Small 
and Pressure is Small 

then Var_Cooling is Zero; 
then Var_Heater is H_Medium; 
then Var_Cooling is Zero; 
then Var_Heater is N_Small; 
then Var_Cooling is Zero; 
then Var_Heater is N_Small 
then Var_Cooling is Zero; 
then Var_Heater is N_Small; 
then Var_Cooling is Zero; 
then Var_Heater is Zero; 
then Var_Cooling is Zero; 
then Var_Heater is Zero; 
then Var_Cooling is Zero; 
then Var_Heater is Zero; 

 
  :  

 
  :  

 

 if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
if Error is P_Large 
 
 

 
and Var_Error is P_Medium 
and Var_Error is P_Small 
and Var_Error is P_Small 
and Var_Error is P_Large 
and Var_Error is P_Large 
and Var_Error is P_Medium 
and Var_Error is P_Medium 
and Var_Error is P_Small 
and Var_Error is P_Small 
and Var_Error is P_Large 
and Var_Error is P_Large 
and Var_Error is P_Medium 
and Var_Error is P_Medium 
and Var_Error is P_Small 
and Var_Error is P_Small 
 

 
and Pressure is Large 
and Pressure is Large 
and Pressure is Large 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Medium 
and Pressure is Small 
and Pressure is Small 
and Pressure is Small 
and Pressure is Small 
and Pressure is Small 
and Pressure is Small 
 
 

 
then Var_Coolings is N_Large; 
then Var_Heater is P_Medium; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
then Var_Heater is P_Large; 
then Var_Coolings is N_Large; 
 

 
Figure 3: Definition section and rule base section 
 
 We found out, that for sufficient process control the size of rule base is limited 
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to a bounded number of rules (e.g. 86 rules only). This is an essential advantage for 
V&V process. 
 
2.4 Defuzzyfication Process 
 
 Because an actuator needs a discrete value for operation, a certain 
defuzzyfication strategy has to be applied. Usual methods of defuzzyfication are 
 
MAX_HEIGHT 
MEAN_OF_MAXIMA 
CENTER_OF_GRAVITY 
 
 We decided to implement the center of gravitiy strategy because of its efficient 
control behaviour /3/. 
 
 
3. Safety Features of Fuzzy Controller 
 
 In safety technique there exist certain fundamental principles like dynamization 
principle, monitoring function, watchdog function, quiescent current principle. 
 
 So, we decided to implement these principles into our design for a safety-critical 
fuzzy controller. After input values have been transformated to fuzzy values by 
fuzzyfication process certain scanner checks, if one or more rules fire. In case of an 
unplanned stop of the scanner the dynamic monitoring component consisting of a very 
simple and passive hardware disables a safe gate so that no command telegrams are 
fed to the technical process (figure 4). 



 
7

 

 
 
Figure 4: Safety components for a fuzzy controller 
 
 An additional watch dog function module disables a safe gate due to stopped 
scanner or because no rule has fired at all after a well-defined time interval. Thus, the 
technical process changes over to a well-defined safe system state (shutdown). As 
much as possible detailled functions have to be implemented in simple and passive 
hardware because of V & V reasons. 
 
 
4. V & V aspects 
 
 Because it is not possible to implement the whole functionality in hardware a 
one-channelled software remains that has to be validated. Figure 5 shows the 
necessary software structure comprising the Operating System Software, the so-called 
Standard Fuzzy Software, and a Rule Base.Operating system software and standard 
fuzzy software have to be validated only once, however for each new application one 
needs a V & V licensing process for the rule base. 
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Figure 5: Software structure of safety critical fuzzy controller 
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5. Conclusions 
 
 A fuzzy controller for safety critical process control was described. We implemented 
fundamental principles of safety technique like dynamization principle, monitoring 
function and watch dog function into a special fuzzy controller design. Hardware and 
software aspects have been discussed. We recognize not only better chances for V & V 
process, but also a better real-time behaviour of such a knowledge based system. Up to 
now some theoretical knowledge for stability proof is available so that we see a real 
good chance for applying a fuzzy controller in the field of safety critical process 
control. 
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