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Abstract: - Due to the advanced fabrication technology, the oxide thickness is now in the regime of 1.0 nm for 
nanoscale MOSFETs. The quantization effects and inversion charge density displacement away from the 
interface of oxide and silicon can not be neglected. The most accurate model for such problem is solving the 
Schrödinger-Poisson (SP) equations with proper boundary condition in 1D structure. However, for 2D device 
characteristics and circuit dynamics, solution of the SP equations encounters numerical difficulty and is not 
ready for practical applications. Various quantum correction models have been proposed for theoretical 
exploration and verification. In this paper we study the quantization effects and for the first time develop a 
corresponding charge analytical model in terms of oxide thickness and applied voltage for ultrathin oxide 
MOSFETs. Based on a comprehensive investigation of charge peak location, peak value, averaged charge 
displacement, and charge density, the successfully derived compact model accounting for the quantization 
effects enables fast and accurate characterization of the effective charge density in nanoscale MOSFETs. This 
new model has computational superiority and can be directly applied for nanoscale device and circuit simulation 
without solving the SP equations. Compared with the measured C-V data of an ultrathin N-MOSFET, our 
simulation results demonstrate the model accuracy. 
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1   Introduction 
Modern nanoscale CMOS devices is with gate length 
of sub-0.1 µm and operating at 0.8 - 1.0 V, so an 
oxide thickness of the order 1.0 - 3.0 nm is considered, 
which corresponds to three to five layers of silicon 
atoms. From theoretical modeling point of view, one 
of important issues is the inversion charge lowing and 
transconductance loss due to the quantization of 
carriers in the channel as well as polysilicon gate 
depletion effects. In the quantum mechanical model, 
the density of inversion charge peaks at around 0.8 – 
1.0 nm below the silicon surface such that gate 
capacitance and inversion charge are both effectively 
reduced to those of an equivalent oxide a few 
angstroms thicker than the physical oxide. Thus, 
characterization is needed to account for these effects 
in the choice of design parameters, especially for 
future 90 – 70 nm MOS technology. Furthermore, 
many research groups and laboratories have already 
fabricated N-MOSFETs with gate lengths around 
30 – 50 nm [1-5], showing that these feature sizes are 
feasible in the recent years. As MOSFET devices are 

further scaled into this nanoscale regime, it has 
become vital to include quantum mechanical effects 
when modeling device behavior. In this nanoscale 
regime, quantum effects significantly dominate 
carrier transport. Various quantum mechanical 
approaches to studying quantum effects for nanoscle 
devices have been developed [6-13], but most of 
them are quite complicated. 

In general, there have been two approaches to 
the modeling of these quantum effects: (1) employing 
full quantum mechanical transport model [14] and (2) 
adding quantum corrections to the classical transport 
equations, such as the Van Dort, Hansch, Modified 
Local Density Approximation (MLDA), Density- 
Gradient (DG), and effective potential models 
[6-11,15-17]. These models have their own merits, 
but still have some limitations in studying the multi- 
dimensional nanoscale MOSFETs. In computational 
electronics, the development of sophisticated and 
efficient Technology CAD (TCAD) tool [18] 
provides engineers significant leverage in conducting 
research into new integrated circuits technologies. 
For the most of ultrathin oxide MOS devices, it has 



been well known that the approach with SP equations 
is the best one because it fully includes the quantum 
mechanics in a consistent fashion. However, the 
numerical solution of the SP equations intrinsically is 
a coupled problem between the system of nonlinear 
algebraic equations and matrix eigenvalue problem. 
Moreover, they tend to be unattractive from an 
industrial point of view since even the most advanced 
industrial simulation tools currently used are 
typically still particle based. 
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Fig. 1. A plot of 2D cross section for nanoscale N-MOS 
devices. 

 
In this paper, we develop a novel carrier model 

for characterizing the nanoscale MOSFETs under 
inversion condition. This quantum correction model 
is ready for nanoscale MOSFETs device and circuit 
simulation without solving SP model or quantum 
correction differential equations. It can be extended 
for 2D device modeling simulation directly. Our 
approach to the compact model formulation is based 
on the exact numerical solution of the SP equations 
[16,17] and estimation of total charge density, 
average charge displacement, charge peak location, 
and peak value systematically. The generalized 
compact model has no any numerical difficult for 
incorporating into classical carrier transport models 
and has very good simulation results. The error for all 
results is controlled fewer than 5%. A detail 
comparison and test are presented in the paper. This 
paper is organized as follows. Sec. 2 states the novel 
compact charge model. Sec. 3 presents the 
characterization methodology. Sec. 4 reports and 
discusses the simulation and measurement for 
N-MOSFET devices. Sec. 5 draws the conclusions 
and suggests the future works. 

2   Model Formulation  
To compute the classical solution as a starting point, 
we first solve a MOS system as shown in Fig. 1 using 
the drift-diffusion (DD) approximation [2, 19-23]. 
The DD equation is then solved self-consistently with 
the SP equation. The SP equations (1-4) are assumed 
to have no wave penetration at the Si/SiO2 interface. 
The details about the SP equations can be found, for 
instance [6-17]. It is discretized with the finite 
volume method; after the discretization we obtained 
the corresponding system of nonlinear algebraic 
equations and the matrix of eigenvalue problem. We 
iteratively solve the coupled problem to obtain the 
self-consistent solution. In each iteration loop, the 
discretized Schrödinger Equation leads to a matrix 
eigenvalue problem, and the corresponding 
eigenvalues and eigenvectors are then computed with 
a parallel divided and conquer algorithm together 
with the QR method [16,17]. Furthermore, the 
discretized nonlinear Poisson Equation is solved with 
the monotone iterative method instead of the 
Newton's Iterative method [19-23]. At least sixteen 
sub-bands are used in the Schrödinger equation 
solver, and various Tox and VG are applied.  
 

  
Fig. 2. An evolutionary procedure to extract the coefficients 

formula for the compact charge model for nanoscale 
N-MOS devices. 



Fig. 2 shows the algorithm of extraction 
procedure to calculate the optimal parameters and the 
analytical expression for the coefficients [24]. The 
coefficients a0 – a3 are extracted subject to 4 different 
physical constraints. 
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With the proposed formulation procedure, the 
calculated inversion-layer charge densities are then 
cast into the form  
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where nCL is the classical electron density solved 

from the Poisson equation and 2/1
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the thermal wavelength. As shown in Fig. 2, the 
optimal parameters a0, a1, a2, and a3 are calculated 
and calibrated from the SP equations for the proposed 
model. They are modeled as a function of VG and Tox. 
The fitting accuracy of the model to the data in terms 
of:  

(i) the peak location,  
(ii) the peak charge density,  
(iii) the total inversion charge density, and  
(iv) the average displacement from the interface  

is within 5%. In our simulation, to evaluate stability 
of the model we define the averaged displacement 
<y> from the oxide-silicon interface. 
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where n(y) is the quantum electron density in the bulk. 
Similarly, we define the total charge Q(y) within the 
inversion layer, were  
 

,)()(
0
∫−=
invy

dyyqnyQ                                               (7) 

 

where the yinv is the interface point of the inversion 
layer. Four physical quantities are computed with the 
derived and SP models as the benchmarks for the 
coefficients extraction and model characterization.   
 
 

3   Extraction and Simulation Results 
In this section, we perform the extraction of the 
model coefficients, and the comparison between the 
proposed model and SP equations are also included. 
As shown in Figs. 3 – 6, we present the extracted 
coefficients for a0, a1, a2, and a3, respectively, versus 
applied gate voltage as well as various oxide 
thicknesses. Fig. 3a and 3b are the plots of the 
optimal extracted results for the coefficient a0. Fig. 3a 
is the plot of a0 versus the VG, where the Tox varies 
with 1.0, 1.3, 1.6, 2.2, and 3.0 nm, respectively. Fig. 
3b indicates the a0 versus Tox, for VG = 0.8, 1.0, and 
1.2 V, respectively. Eq. (8) is the corresponding fitted 
formula for the coefficient a0, and from Fig. 3a we 
find the a0 is almost independent of Tox, and has an 
exponential dependence in terms of VG. For a given 
VG, Fig. 3b again suggests that the a0 is a constant for 
all Tox. The variation of the coefficient a0 versus 
applied voltage VG is about 0.25. 

As shown in Fig. 4, we plot the a1 versus the VG 
and Tox, respectively. The fitting function is given in 
Eq. (9). We now have the a1 is exponential 
dependence in VG and linear relation in Tox. The 
variation of the coefficient a1 versus applied voltage 
VG is about 1.0. The variation of the coefficient a1 
versus oxide thickness is about 0.8. As shown in Fig. 
5, because the a2 values are small and closed to zero, 
we simply set the a2 equals 0 in this formulation, Eq. 
(10). To model the formula for a3, as shown in Fig. 6, 
we find the behavior is more complicated then others. 
We here assume the a3 is function of α

GV  and β
xT0
, 

where α and β are two exponents to be determined. 
The α and β in the coefficient a3 in Eq. (11) are 
chosen as 2 and 1.23, respectively. The variation of 
the coefficient a3 versus applied voltage VG is about 
4.0. The variation of the coefficient a1 versus oxide 
thickness is about 1.2. 
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In Figs. 3 – 6, the symbols are the optimal 

extracted data for coefficients and lines are the fitted 



functions for all cases. All above equation where VG 
is in volts and Tox is in nm. The model parameters 
given in Eqs. (8) - (11) are based on a p-type substrate 
with NA  = 1017 cm-3. For other substrate dopings, VG 
should be adjusted by an amount equal to a shift in 
the threshold voltage due to the change in NA. 
However, this adjustment is usually very small (~ 
0.10 V). For different gate oxide thickness, Fig. 4 
shows errors between the calculated optimal a’s 
values and the fitted a’s formula for the items (i) ~ (iv) 
with respect to VG.  
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Fig. 3. (a) The plot of a0 versus VG. (b) The plot of a0 versus 

Tox. We note that the a0 is exponential dependence 
on VG and nearly constant on Tox. 
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Fig. 4. (a) The plot of a1 versus VG. (b) The plot of a0 versus 

Tox. 
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Fig. 5. (a) The plot of a2 versus VG. (b) The plot of a0 versus 

Tox. The a2 is set to be zero constant. 
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Fig. 6. (a) The plot of a3 versus VG. (b) The plot of a0 versus 

Tox. 

4   Results and Discussion 
This section presents the simulation results and gives 
a comparison of the measured data and calculated 
results for N-MOSFET capacitance. With the 
developed model and extracted coefficients, Fig. 7 
demonstrates the electron density distribution versus 
distance away from the Si/SiO2 interface. The oxide 
thickness is fixed at 2.2 nm and the applied voltage 
varies from 0.5 to 1.7 V. The error of the four 
different evaluation criteria is less than 5 %. For 
different oxide thicknesses, we have the same results. 
Fig. 8 shows the electron density distribution versus 
distance, where the oxide thickness varies from 1.0 
nm to 3.0 nm and the applied voltage is at 0.5 V. 
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Fig. 7. The electron density distribution with the SP 

equations and our developed model, where the 
oxide thickness is fixed at 2.2 nm. 
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Fig. 8. The electron density distribution for different oxide 

thicknesses. The applied voltage is fixed at 0.5 V. 
The solid lines are SP results and dots are our 
model data.  

 
Fig. 9 shows the achieved error control for the 

four type physical quantities: total charge density, 
average charge displacement, charge peak location, 
and peak value, we have found that the proposed 
model has good accuracy for the quantum effects 



modeling and simulation. Fig. 10 is a primary result 
of the model and confirms the observation. We have 
applied our compact quantum correction model for 
the inversion charge to the calculation of C-V curves. 
A 20×20 µm2 N-MOSFET with Tox = 1.6 nm SiO2 
film is fabricated and is measured for the C-V curve 
measurement. The experimentally measured data is 
shown together with the classical and the SP result in 
Fig. 10. The classical result is away from the 
measured data. The SP result and our model result 
have very closed prediction along with the measured 
data. The agreement is excellent except for 0.1≥GV  
V. This is expected as we have assumed zero 
penetration of the wavefunction into the oxide in our 
SP equation solver. The deviation of the calculated 
result from the measured data indicates that there is a 
substantial tunneling through the oxide taking place 
at 0.1≥GV  V.  

 

VG (V)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P
ea

k 
lo

ca
tio

n 
er

ro
r 

(%
)

0

1

2

3

4

5
Tox = 3.0 nm

1.3 nm

2.2 nm 1.0 nm
1.6 nm

VG (V)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P
ea

k 
va

lu
e 

er
ro

r 
(%

)

0

1

2

3

4

5
Tox = 1.6 nm

1.3 nm

2.2 nm
3.0 nm

1.0 nm

 

VG (V)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

T
ot

al
 c

ha
rg

e 
er

ro
r 

(%
)

0

1

2

3

4

5

Tox = 3.0 nm

1.0 nm
2.2 nm

1.3 nm
1.6 nm

VG (V)

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

A
ve

ra
ge

d 
di

sp
la

ce
. e

rr
or

 (
%

)

0

1

2

3

4

5

Tox = 3.0 nm
2.2 nm
1.0 nm

1.3 nm

1.6 nm

 
Fig. 9. The error plots of model for the four physical 

quantities. All errors are less than 5 %. 
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Fig. 10. A comparison of the simulated and measured C-V 

curves for the proposed compact model and the SP 
model. 

We have presented an efficient compact carrier 
quantization model for nanoscale MOSFETs 
modeling in terms of gate voltage and oxide 
thickness. This model formulation also can be done 
with the model in terms of device surface electric 
filed and oxide thickness. Therefore the derived 
model can be extended into 2D/3D MOSFETs device 
modeling and circuit simulation. We would like to 
point out that our model is continuously 
differentiable and can be applied for circuit 
simulation. 
 
 

5   Conclusions 
In this paper, we have studied quantum confinement 
effects with the developed charge quantization model 
successfully. The charge analytical model was in 
terms of oxide thickness and applied voltage for 
nanoscale MOSFETs. Based on a comprehensive 
investigation of charge peak location, peak value, 
averaged charge displacement, and charge density, 
the successfully derived compact model accounting 
for the quantization effects enables fast and accurate 
characterization of the effective charge density in 
nanoscale MOSFETs. The error for the criteria is less 
than 5 %. This new model has computational 
superiority and can be directly applied for nanoscale 
device and circuit simulation without solving the SP 
equations. Compared with the measured C-V data of 
an ultrathin N-MOSFET, our simulation results have 
demonstrated the model accuracy. This compact 
quantum correction can directly couple with classical 
transport models to simulate the nanoscale device 
transport without additional numerical difficulties. 
Some future works also should be considered, such as 
the model can be in terms of the surface electric field, 
includes the gate current characteristics, and extends 
into 2D models. 
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