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Abstract: – Quantum mechanical analysis of the quantum confinement of ultrashort CMOS is numerically very
expensive. In this paper we present a macroscopic model, which includes a new approach to match the vertical
carrier profile and combines it with a classical model in lateral direction. The simulation results show a significant
improvement concerning the accuracy of the carrier profile and the C/V characteristics.
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1 Introduction
It is well known that in consequence of the

ever shrinking feature sizes quantum mechan-
ical (QM) effects are getting more important
for the performance of state-of-the-art CMOS
devices. This issue is widely investigated and
understood at physical level, but a full two-
dimensional treatment is far from trivial and
numerically very expensive.

Up-to-date macroscopic models incorporat-
ing QM effects were basically designed to
fit the C/V characteristics of the investigated
MOS structures [1][2][3] but not for a fully
two-dimensional treatment. In this paper a new
approach to model the quantum confinement
near the channel surface is introduced which
does not only match the C/V characteristics but
also allows the two-dimensional analysis of ad-
vanced CMOS and similar devices. Further-
more the new model is capable to match the
vertical carrier profile very accurately, thus of-
fering new insight into the the actual properties
of modern devices.

I. The QM Model
Classical device modeling leads to two sig-

nificant inaccuracies concerning the carrier
concentration near the channel surface.

First, the splitting of the conduction band
into several discrete eigenvalues is not consid-
ered. This leads to an overestimation of the sur-
face charge, as the energy difference between
these discrete eigenvalues and the Fermi-level
is bigger than the one from the bottom of the
conduction band to the Fermi-level. Second,
classical models do not consider that the shape
of the wave functions reduces the carrier con-
centration near the surface as well. Conse-
quently, a rigorous approach to simulate the
carrier concentration has to take care of both ef-
fects, by offering approximations for the wave
function and the actual band structure.

A. Approximation of the Wave Function

We model the first of these effects by a re-
duction of the density of states�� near the in-
terface applying an exponential shape function.
This follows an approach proposed by H¨ansch
et al. [1],
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where� is the distance to the interface and��
is an offset to match the nonzero carrier con-
centration near the surface stemming from the
finite barrier height.��� is the thermal wave-
length responsible for the reduction of the QM
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Fig. 1. Band structure near the surface and comparison
between the conduction band edge of the classical
and the new approach

effect with increasing distance from the inter-
face,
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If this correction is applied the qualitative car-
rier distribution near the interface in strong in-
version is reproduced quite well, but without
consideration of band structure effects, this is
not the case in the threshold voltage region [3].

B. Approximation of the Energy Band Structure

Fig. 1 shows the actual band structure near
the surface of a MOS capacitor, calculated with
a self-consistent Schr¨odinger-Poisson solver
working with the effective mass approach [4].
Near the surface the lowest eigenenergy is sig-
nificancy higher than the band edge, thus caus-
ing an overestimation of the charge when the
classical simulation approach is applied. The
basic idea of our model is to replace the effec-
tive band edge by the first discrete energy level
(see Fig. 1). This seems reasonable as quantum
mechanical calculations show that usually over
90% of the carriers are in this energy band.

We set the band edge at the surface to
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whereas��	

���
���� is the modified bandgap en-

ergy which is used in the Boltzmann statistics,
����������

 is the bandgap according to the mate-

rial specification, and��
 is the applied cor-
rection. Our model pins the band edge��	
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inside the device to the value of��	

���
���� as

long as��	
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 ���.
As the exact calculation of the first energy

level is numerically expensive and requires the
solution of the Schr¨odinger equation an ap-
proximation is used: The offset��
 is approx-
imated following a formulation of Van Dort et
al. [3], which reads as
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whereas����
�� is the magnitude of the electric
field at the interface and� is the permittivity of
the semiconductor.
 � �
�� ����
��� is an
empirical constant.

II. Simulation Results
The model was implemented into the device

simulator MINIMOS-NT [5] and several typ-
ical structures were simulated in order to ex-
plore its one- and two-dimensional capabilities.

A. Simulation of MOS Capacitors

The one-dimensional capabilities of the new
model were checked by simulations of a
MOS capacitor. As reference the same struc-
ture was simulated using the self-consistent
Schrödinger-Poisson solver. Fig. 2 shows a
comparison of the C/V characteristics obtained
with the new model, the Schr¨odinger-Poisson
solver, and the H¨ansch model. An excellent
fit between the results from our new model
and the quantum mechanical calculations is ob-
tained, especially the onset of inversion is pre-
dicted very accurately. The overestimation of
the capacity in strong inversion is a well known
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Fig. 2. Comparison of C/V curves of a MOS capacitor obtained with different simulation
approaches. The H¨ansch model simulations were carried out with optimized offset� �.
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Fig. 3. Comparison of carrier profiles. The operating points for the different models were
chosen to obtain similar maximum concentrations. The same parameter sets as for the
C/V calculations were applied.
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Fig. 4. Transfer characteristics at of a 50nm NMOS at
bias��� � ��. The classical approach overesti-
mates the drain current.

effect stemming from the different distribu-
tion statistics applied in the Schr¨odinger solver
(Fermi-Dirac) and the device simulator (Boltz-
mann)(see e.g. [6]).

Fig. 3 shows a comparison of electron con-
centration profiles. It can be clearly seen that
the new model offers a decent fit to the quan-
tum mechanical results. The H¨ansch model
concentrates the charge closer to the surface,
which is a consequence of the comparatively
smaller band gap.

B. Simulation of a CMOS Transistor

The ability to reproduce the channel pro-
file opens the door to a precise simulation of
state-of-the-art CMOS devices. Fig. 4 shows
the results obtained for a device with 50nm
gate length using the QM approximation and
compares them to a classical simulation. The
influence of the quantum confinement, which
results in a reduction of the drain current, is
clearly visible.

It is remarkable that by introducing our
model into the simulator it was not only capa-
ble to perform a full two-dimensional analysis
of the properties in the channel area but also
a significant speed-up and generally better nu-

merical properties were obtained. E.g. for the
calculation of a typical CMOS example, dis-
cretized at about 5000 nodes, the classical sim-
ulation took 55s CPU time per operation point
and was reduced to 18s for the QM calcula-
tions. This simulations were performed on a
Linux machine with a 650MHz Intel Celeron
CPU. A possible reason for the speed up can be
the smoother distributions when quantum con-
finement is taken into account.

III. Outlook
In this paper we presented a new macro-

model for the simulation of the quantum con-
finement near the channel surface. A very good
fit was obtained for the vertical carrier profile
and together with the good numerical proper-
ties a deeper insight into the properties of fu-
ture device generations is possible.
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