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Abstract: - The optimization of apodized linearly chirped fiber Bragg gratings in the field of chromatic 
dispersion compensation is discussed in terms of group delay response and pulse recompression. To develop this 
study two prototype scenarios are considered to show the different behavior of the compensating devices in 
function of the link length. Simulation results for 20 ps gaussian pulses transmitted and recompressed with 
different grating designs over the both links are presented. The maximum deviation error and the regression 
slope parameters are introduced to compare the quality of the group delay response to establish an optimum 
design of the apodization strength.  
 
Key-Words: - Bragg gratings, dispersion compensation, pulse recompression, apodization , chirp, group delay 
ripple, compression ratio. 
 

1   Introduction 
Degradation of transmitted signals due to chromatic 
dispersion is one of the major limiting factors in long 
haul optical communication links, since transmission 
rates are constantly increasing and the loss of optical 
fiber becomes lower. Several techniques have been 
proposed to achieve dispersion compensation and 
pulse recompression as prechirped pulse transmission 
or dispersion shifted fibers. However, the first one 
does not cancel the dispersion completely, and the 
second one requires modifying existing fiber links. In 
recent years, there has been increasing interest in 
dispersion compensating fiber Bragg gratings because 
they are entirely passive and their size, cost and fiber 
compatibility make them very attractive devices[1]. 
Given that the group delay response plays a decisive 
role in the dispersion compensation behavior [2], a 
detailed study of the design parameters that influence 
this delay function would be helpful to achieve 
optimum results. 
In this paper we present a study about the effect of 
the apodization strength in function of the total 
amount of dispersion to be compensated, this is, the 
fiber link length. Two general prototypes has been 
considered, and we have computed the simulated 
results for gaussian pulses transmitted and 
recompressed with the different ALCFBG’s designs. 
In Section II we develop the dispersion compensation 
design and in Section III we present and discuss the 
computed results for the different apodization  

strength profiles in the two scenarios. Finally, In 
Section IV  the main conclusions are presented. 
 
 

2 Dispersion compensation design 
For a determined optical link, with an specified 
length Lf and dispersion parameter Df , we can design 
a Bragg grating that can achieve the opposite 
dispersion level in order to cancel this undesirable 
effect. Some of the parameters as the linear chirp will 
be determined by the time delay slope required, but 
others as apodization function and modulation depth 
open a wide variety of possibilities to improve the 
response of the device. The minimum length required 
to compensate the dispersion introduced by the fiber 
link is [3]: 
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Where c is vacuum speed,  n is the refractive index of 
the fiber, and ∆λ is the bandwidth to compensate for 
chromatic dispersion. In fact, L0 is the required length 
for a uniform grating. Nevertheless, we can apodize 
the Bragg grating, but in that case we should use a 
greater length to compensate the reduction of the 
coupling strength caused by the apodization profile at 
the grating ends [4]. In order to establish an optimum 
profile to acquire the best dispersion compensation, 
several parameters have been reported in previous 
works, as the performance versus the apodization 
factor or the grating length. [5]. However, the 



problem about the grating length required  to 
compensate the chromatic dispersion can be directly 
solved increasing the minimum length required L0 
proportionally to the apodization factor 0<aeff<1[3]: 
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The smaller the factor, the tighter the apodization 
profile. This way the equivalent length of the 
apodized grating is Leq=L0/aeff  which increases for 
‘tight’ apodization functions f(z), and tends to the 
minimum length L0 for profiles more similar to non-
apodized or square profiles. From the point of view 
of the kind of the apodization function several 
proposals have been made. In [5] it has been 
concluded that “broad flat center and smoothly 
decaying wings” give better grating performance. On 
the other hand, in [3] is showed that optimum 
apodization profiles have not only a flat center region 
but also edges with continuously decaying slopes. 
However the optimum performance will strongly 
depend on the length of the link, this is, the total 
amount of dispersion to be compensated. This way, 
we are not going to compare different apodization 
functions as sinc, hyperbolic tangent, Blackman, etc., 
since their characteristics have been studied in the 
literature. In fact, we have chosen a raised cosine 
profile as expressed in (3) because it is in good 
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agreement with the previous statements, continuously 
decaying edges, and we have studied the influence of 
the strength of this profile in function of the total 
amount of dispersion to be compensated. Each time 
we change the tightness of the profile the chirp factor 
will be computed depending of the equivalent length 
accordingly to [6] 
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3 Pulse recompression 
We are going to analyze two scenarios, a short link of 
30 km, and a longer link of 100 km of standard 
singlemode fiber with a second-order dispersion 
parameter of 17 ps/nm·km. The pulses under 
consideration will be gaussian pulses, defined as: 
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Where T0 is the half-width at 1/e intensity point, fixed 
to 20 ps, and the peak amplitude has been set to A0=1. 
It is also possible to analyze prechirped pulses, with a 
determined value for the chirp parameter C, although 
for the present work we have limited our study to 
non-prechirped pulses. 
We consider the case where the carrier wavelength is 
far away from the zero-dispersion wavelength so that 
the third-order dispersion is negligible, this way the 
amplitude of the transmitted pulse can be expressed 
as [7]: 
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To show the results for the transmitted pulse the time 
axis in Fig.2 and Fig.4 is displayed assuming a 
reference frame moving with the pulse t’=t-β1z  
where  β1=1/vg. In order to compensate the 
transmitted pulse for the chromatic dispersion of the 
fiber link, we can consider one of the classical setups 
where the broadened pulse is recompressed and back 
reflected from a chirped Bragg grating and extracted 
with an optical circulator. We have considered for the 
Bragg grating ê0Leff product a value of  7.08,  which 
is inside the range of maximum restoration, to 
guarantee a good peak power result. The 
recompressed pulse is computed in the frequency 
domain as the product of the Fourier transform of the 
transmitted pulse amplitude and the reflection 
coefficient of the Bragg grating, obtained through 
Coupled Mode Theory and computed with a transfer 
matrix method [8]. Finally, the inverse Fourier 
transform is calculated to show the profile of the 
recompressed pulse in the time domain. 
 
 
3.1 Short links 
We start our study with a 30 km standard non-shifted 
fiber with a total amount of 510 ps/nm chromatic 
dispersion as a prototype of relatively short link.  To 
study the effect of the apodization strength in pulse 
recompression we have compared the non-apodized 
design with the performance of three different raised-
cosine profiles of increasing strength shown in Fig.1 
The computed numerical results are summarized in 
Table 1. Obviously, the uniform grating achieves the 
shorter length, even reaching the same compression 
ratio of the apodized ones, Cô=0.95. But given the 
high group delay ripple (mean ripple=13.84 ps in the 
3 dB band) the recompressed pulse will suffer of a 



noticeable sidelobe level, as can be observed in 
Fig.2(b). 
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Fig 1. Raised cosine apodization profiles of 
increasing strength a=0.4 (solid, aeff=0.7), 

a=1(dotted, aeff=0.6), a=4 (dashed, aeff=0.37) 
 

In Fig.2(a) is showed the group delay response as 
well as the first degree polynomial that best fits the 
response in a least-squares sense. In order to justify 
the not so bad results obtained for a non-apodized 
grating it is important to note that although the mean 
dispersion of this device is 286.48 ps/nm far away 
from the ideal 510 ps/nm of the link, the slope of the 
linear regression is 518 ps/nm. 
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Fig2.(a) Group delay response (rippled) and linear 
regression for a 50 km, Df=17 ps/nm/km link, non-

apodized grating 

-700 -600 -500 -400 -300 -200 -100 0 100 200
0

0.2

0.4

0.6

0.8

1

1.2

 
Fig.2(b) Initial, transmitted and recompressed pulse 
for a 50 km, Df=17 ps/nm/km link, non-apodized 

grating. 

In other words, the quite high ripple oscillates around 
a linear response very close to the ideal slope.   
When we apodize the grating with a raised cosine 
profile with parameter a=0.4, it is obtained that the 
compression ratio has increased to Cô=1, the mean 
dispersion acquired is 439 ps/nm and the regression 
slope is 517 ps/nm, not really far from the uniform 
case, but now the mean ripple is only 2.47 ps, as can 
be seen in Fig.3. Besides, the grating length is only 
one centimeter longer than the uniform case. 
Following the study for ‘tighter’ apodization profiles,  
some important conclusions can be extracted. First of 
all, we can not affirm that the stronger the 
apodization, the better pulse recompression. As we 
can observe in Table 1, when the apodization factor is 
increased, the regression slope Dr effectively is more 
closer to the ideal 510 ps/nm, but the mean error is 
not constantly decreasing, and the Compression ratio 
does not improve. However, as expected, the grating 
length increases, which is a very important constraint 
for the mask process or exposure times. This behavior 
can be explained since for small apodization factors 
the ripple is high but with a linear slope, very close to 
the ideal one.  
 

1.9348 1.935 1.9352 1.9354 1.9356 1.9358 1.936

x 10
14

0

50

100

150

200

250

300

350

400

450

500

 
Fig.3.Group delay response (rippled) and linear 

regression for a 50 km, Df=17 ps/nm/km link, raised 
cosine-apodized grating (a=0.4) 

 
 Uniform r.c(a=0.4) r.c(a=1) r.c(a=4) 
Leq 4.22 cm 5.3 cm 6.64 cm 11.27 cm 
Rmax 0.8 0.71 0.70 0.69 
Dr 518 517 514.7 514 
åm 13.84 2.47 0.68 0.83 
Cô 0.95 1 0.95 1 
Table 1. Equivalent length, maximum Reflectivity, 
regression slope, mean error rate and compression 
ratio for uniform, and raised cosine apodizations (a 

parameter values: 0.4,1,4) 
 



However, for higher apodization factors the group 
delay is smoother, but not so linear, leading to not so 
good compression ratios, as happened for the raised 
cosine with a=1. If we extreme the conditions 
reaching to a very ‘tight’ profile (a=4), we will obtain 
again good results, with a regression slope of 514 
ps/nm. The prize paid in terms of grating length, 
however, can be very expensive. The improvement of 
the behavior from the a=0.4 raised cosine apodization 
to the a=4 profile, does not justify a double length of 
the Bragg grating, at least for relatively short links, 
specially since the compression ratio with the first 
one is as good as the second one.  
   
 
3.2 Long links 
The results of dispersion compensation for longer 
links can give an extra amount of information to 
design the optimum grating device. For 100 km of 
standard singlemode optical fiber, with the same 
second-order dispersion parameter 17 ps/nm/km, this 
is, a total dispersion of 1700 ps/nm, we have 
compared  the same four cases of the previous 
section. Now, following the Bragg grating design 
steps showed in (1), (2) we have a chirped Bragg 
grating with ê0Leff= 11.81. 
 

 Uniform r.c(a=0.4) r.c(a=1) r.c(a=4) 
Leq 7 cm 8.83 cm 11.06 cm 18.78 cm 
Rmax 0.99 0.98 0.97 0.95 
Dr 1722 1755 1745 1741.5 
åm 44.57 8.91 5.68 6.68 
åd 88.3 35.07 13.85 14.47 
Cô 0.8 0.8 0.8 0.8 

Table 2. Equivalent length, maximum Reflectivity, 
regression slope, mean error rate, maximum deviation 
error, and compression ratio for uniform, and raised 
cosine apodizations (a parameter values: 0.4,1,4) 
 
In this case, we can observe from Table 2. that the 
compression ratio does not improve with the 
apodization strength, but there are other parameters 
that predict a higher amount of sidelobe level in the 
time domain recompressed pulse, as the mean error 
rate, or the deviation of the regression slope from the 
ideal case of 1700 ps/nm. The uniform profile can be 
directly discarded given the 44.57 ps of mean error 
rate, what will degrade the recompressed pulse as can 
be seen in Fig.4. To choose between lower or higher 
apodization factors now we have to compare the 
mean error, and the regression slope. This time, the 
stronger the apodization, the better results, given that 
the total amount of dispersion to compensate is 
higher. 
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Fig 4. Initial, transmitted and recompressed pulses for 

a 100 km, Df=17 ps/nm/km link, non-apodized 
grating. 

 
But we have introduced another parameter to 
establish a better comparison, the maximum deviation 
error, computed as the maximum deviation from the 
delay response to the regression slope in the 3 dB 
bandwidth. This shows us that the a=4 profile has 
more deviation error (åd=14.47) than the a=1 
(åd=13.85), although the rest of parameters are better. 
It can be seen in Fig.5(b) and Fig.5(c) how the delay 
response losses linearity in the second case.  
Consequently, it is not worth to increase arbitrarily 
the apodization strength, and consequently the grating 
length, in order to provide a better performance, 
because with middle apodization factors (about 0.6) 
both the compression ratio and the sidelobe level give 
good enough results for signal regeneration [Ou].  
The graphic representation of the group delay for the 
three previous apodization profiles are presented in 
Fig.5 where it can be observed how the delay is 
smoother for stronger apodization profiles but begins 
to loss linearity. 
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Fig.5(a) Group delay response (rippled) and linear 

regression for a 100 km, Df=17 ps/nm/km link, raised 
cosine-apodized grating (a=0.4) 
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 Fig.5(b) Group delay response (rippled) and linear 
regression for a 50 km, Df=17 ps/nm/km link, raised 

cosine-apodized grating (a=1) 
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Fig 5(c) Group delay response (rippled) and linear 

regression for a 50 km, Df=17 ps/nm/km link, raised 
cosine-apodized grating (a=4) 

 
 

4 Summary 
We have presented a review of the state-of-the art 
criteria for the design of optimum apodized linearly 
chirped fiber Bragg gratings for dispersion 
compensation and extended the study to short 
distance and long distance scenarios. We have 
introduced new parameters as maximum deviation 
error and regression slope to study the behavior of the 
time delay response that can give extra information to 
select the proper design in function of different 
requirements. The analysis of two prototype of 
standard fiber links suggests that there is not a 
general optimum apodization factor for chromatic 
dispersion compensation, but we can observe that for 
“short” links it will be enough with profiles like 
raised cosine with a=0.4 (aeff=0.79) while for “long” 
links it is better to use stronger functions like the a=1 

function (aeff=0.6). In any case, really strong 
functions with low apodization parameters (aeff<0.4) 
are not justified in terms of compression ratio or 
sidelobe level, taking into account the increasing 
difficulty of the mask process. 
 
 
5 Acknowledgments 
This work is supported by the Spanish Ministry of 
Science and Technology (Ministerio de Ciencia y 
Tecnología) under grant TIC2000-0265-P4-02 and 
has been developed in collaboration with RETECAL. 
 

 
References: 
[1] B.J.Eggleton, K.A. Ahmed, F.Ouellette, 
P.A.Krug, H.F.Liu “Recompression of pulses 
broadened by transmission through 10 km of non-
dispersion –shifted fiber at 1.55 ìm using 40 -mm-
long optical fiber bragg gratings with tunable chirp 
and central wavelength”. IEEE Photonics.Techn.Lett. 
Vol.7,no5,1995 
[2] Jamal, J.C. Cartledge. “Variation of the 
performance of multispan 10 Gb/s systems due to the 
Group Delay Ripple of Dispersion Compensating 
Fiber Bragg Gratings”.J.Lightwave Tech. vol.20, 
no.1, 2002 
[3] K. Ennser, M.N.Zervas, R.I.Laming 
"Optimization of Apodized Linearly Chirped Fiber 
Gratings for Optical Communications”  J. of 
Quantum Electronics. Vol.34, no. 5, 1998 S.  
[4] D.Benito, M.J.Erro, M.A.Gomez, M.J.Garde, 
M.A.Muriel, "Emulated single-mode fiber optic link 
by use of a linearly chirped fiber bragg grating" 
J.Selected Topics in Quantum Elec., vol. 5, no.5, 
1999 
[5] D.Pastor, J.Capmany, D.Ortega, V.Tatay, J.Martí 
"Design of apodized linearly chirped Bragg gratings 
for dispersion compensation" J.Lightwave Tech. 
Vol.14, no. 11, 1996 
[6] F. Ouellette., “All-fiber filter for efficient 
dispersion compensation”, Opt.Lett., vol16, no. 5, pp. 
303-305, 1991. 
[7] G.P.Agrawal. “Fiber-Optic Communication 
Systems” Wiley Series Editors, USA 1992 
[8] M.Yamada, K.Sakuda, "Analysis of almost-
periodic distributed feedback slab waveguides via a 
fundamental matrix approach" Applied Optics, vol. 
26, no. 16. 


