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1 INTRODUCTION 
 
Microtubules (MTs) are the most fundamental 
filamentous structures that comprise the 
cytoskeleton, with energetic factors and 
information processing as intriguing aspects of 
their behavior [1]. As the charge transfer 
through MTs is an important prerequisite for 
their role in intra-cell information processing, 
in this paper we shall consider the theoretical 
model for charge transport through MTs by 
soliton mechanism, and analyze it by methods 
of nonequilibrium statistical physics. 
 
2 MODEL 
 
Our starting point in the analysis of the charge 
transport through MTs is the Hamiltonian 
[2,3]: 
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In order to adapt the above Hamiltonian for 
further analysis, it is necessary to introduce the 
denotations for impulse and coordinate by 
virtue of boson operators:  
 

( )nnn

nnn

bb
M

iu

bb
M

p

−







=

+







=

+

+

2
1

2
1

0

2

)(
2

0h

h

ω

ω
                            (2) 

 
so that Hamiltonian takes the form 
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where the following parameters were 
introduced: 
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The further analysis is a standard one, through 
elimination of the linear part X3 of the 
Hamiltonian (3), which corresponds physically 
to the problem of nonlinear excitations of the 
system, i.e. solitons. So,  
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where 
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In the above equations the constant Y of the 
unitary operator can be found from the request 
for elimination of the linear term, while index 
n enumerates all monomers of the 
microtubular chain, so that: 
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From the viewpoint of our problem, the above 
Hamiltonian is not sufficient to describe the 
charge transport, and it is therefore necessary 
to introduce the fermion (electronic) 
subsystem, defined as follows:  
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The electron charge injected in MT interacts 
with nonlinear excitations (solitons) via 
longitudinal acoustic phonons, and in order to 
simplify this interaction mathematically, we 
shall diagonalize Hamiltonian (7) by 
Bogolyubov transformations:  
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where the operators bk, bk

+ are Fourier 
transforms of the boson operators. With so 
defined denotations, the Hamiltonian of the 
boson subsystem related to solitons has the 
following form:  
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where: 
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Interaction of the two described subsystems is 
expressed mathematically by the Hamiltonian:  
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where F(q) is the structure factor which 
characterises interaction of electrons with 
longitudinal acoustic phonons, and N is the 
number of tubuline dimers within MT. 



 
The appearance of the charge within MT 
introduces short nonequilibrium distribution of 
the physical parameters in the system, which 
can be treated conveniently by the methods of 
nonequilibrium statistical physics, developed 
by Zubarev [4]. Therefore we shall solve the 
kinetic equation describing decrease of the 
number of charges due to interaction with MT 
[4]:  
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where nk is the number of electrons with the 
wavenumber k, and H is the Hamiltonian of 
the system: H = Hs + He + Hint. The term In 
represents nonequilibrium correction 
determined as follows:  
 

( ) [ ][ ] dtHntHeI k
t

n ∫
∞−

−=
0

12 ,,1 ε

h
               (14) 

 
In the Eq.(14), the operator 
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where es HHH +=0  can be determined by 
Weyl identity [5], as well as the known 
commutation relations for fermion and boson 
operators. For instance,  
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As [ ] +

′′
+
′′

+ = kkkkkk aaaa δ, , it follows directly:  
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The similar commutation relations hold in the 
framework of the boson statistics: 
[ ] [ ] +

′′
+
′

+
′′

+ =−= kkkkkkkkkkkk bbbbbbbb δδ ,,, , which 

enables the similar application of the Weyl 
identity upon boson operators. By not entering 
deeper in the calculation of the integral of the 
nonequilibrium correction, let us state that 
appliction of the equation [ ] 0, =qk Hn  (an 

averaging over equilibrium boson ensamble), 

Vick theorem, and integration over small 
parameter 0→ε , give rise to the following 
equation for the average number of electrons: 
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where Nq is the equlibrium number of the 
bosons with the wavenumber q, and nk+q, nk-q i 
nk are corresponding numbers of the fermions 
(electrons), while qkqkkq EEE −+>∆ ,,

~  was 
assumed for the velocities of chaotic 
movements of electrons. The rather 
complicated Eq.(17) can be simplified for 
practical purposes, under the assumption that 
majority of electrons is concentrated around 
most probable wavenumber k and that 
longitudinal coherent excitations have the 
same wavenumber q, giving rise 
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Now, it is possible to obtain electrical current 
through MT: 
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It is interesting to note that application of the 
typical values of the parameters: 
( ) [ ] [ ] ,106.1,31091.2~,6101.2 1924482 CeJJqF q

−−− ⋅=⋅≅∆⋅≅

5.1≅qN  (for KT 300= , 

[ ]),7101.4 4 eVq
−⋅=ωh  1≅− −+ qkqk nn  

(roughly one charge per MT), [ ]213=N , 
gives estimation for electrical current through 
MT, I ~ 0.1 nA. 
 
 
3 CONCLUSION 
 
Microtubules (MTs) are the most fundamental 
filamentous structures that comprise the 
cytoskeleton, with energetic factors and 
information processing as intriguing aspects of 
their behavior. In this paper the theoretical 
model for charge transport through MTs by 
soliton mechanism is developed, and analyzed 



by methods of nonequilibrium statistical 
physics. Thus obtained electrical current 
through MT is estimated as ~ 0.1 nA. 
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