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Abstact: - The access network of the Universal Mobile Telecommunication System (UMTS) forms a tree�topology
network, however, the great amount of tra�c carried in it requires a more reliable network structure. That way,
new methods are needed to plan a minimum cost extension of the classical topology. In order to satify the reli-
ability expectation, expressed as a limitation for the tra�c loss in the network, we insert additional links, while
taking into account several topological constaints. In the current paper, we introduce a genetic algorithm to solve
the speci�c problem, and we compare the results of it with the ones produced by a greedy heuristic.
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1 Introduction

Today, increasing amount of the voice communication
use wireless networks. Current tendencies show that
beside voice transmission new types of services will
appear, demanding high rate of data transmission ca-
pability from the next generation of wireless networks.
The Universal Mobile Telecommunication System

(UMTS) [1], is the European representative of third
generation networks. In UMTS, the network is built
from two main type of components: the radio base
station (RBS) and radio network controller (RNC), as
shown on Fig. 1. The RBSs have the task to handle
their own radio channels, while the task of the RNC is
to manage the radio channels of the connected RBS's,
and to concentrate/relay their tra�c to the upper level
core network. The access network forms tree�topology,
where every RBS aggreagates and forwards the traf-
�c of the corresponding lower level RBSs. Besides,
in earlier releases of UMTS, the RBS does not have
routing capability, therefore even the tra�c between
neighbouring RBSs need to pass their dedicated RNC.
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Figure 1: The structure of UMTS

The optimal construction of the access part of these
networks is an important task in the current UMTS-
related activities. If the correct number and location
of RBSs is given, the planning process consists of two
basic parts, namely:

a) Clustering : Find the optimal number and loca-
tion of RNCs, and de�ne sets of RBSs to be con-
nected to them.

b) Tree construction: Create a cost-optimal RNC-
rooted tree topology subnetwork from a given set
of RBSs.

In the literature there are some papers dealing
with the planning of multi�constrained spanning tree
topologies. Paper [3] deals both with the clustering
and the tree construction, while [4] focuses only on the
construction of the trees. In the present paper we also
focus only on the planning of an RNC-subnetwork.
In a high capacity data network, the reliability is

also an important thing to deal with. In case of the
access network of UMTS, the basic tree topology and
the usage of microwave links lead to a high sensitivity
to any kind of failure. Since a single failure may re-
sult a signi�cant loss of data, a fault-tolerant topology
is required. As the number of stations to be inter-
connected is large, both the traditional mesh�like and
ring�topologies can be very uneconomical, so a new
method is required to plan a topology with acceptable
cost that satis�es given reliability demands.
Several papers are dealing with reliability. Most

papers [5, 6, 7] propose heuristic (e.g. genetic) algo-
rithms to minimize the cost of mesh networks while



taking into account the all terminal reliability con-
straint, which de�nes the probability that every pair
of network nodes can reach each other. These methods
provide good solutions of the problem above, but they
are infeasible in case of such large networks, as the ac-
cess part of UMTS. In order to handle networks up to
some hundred devices, in [2] we presented a method
for planning tree-topology networks and an algorithm
for extending these networks with extra links to gain
higher reliability. The latter algorithm occured to have
some weaknesses, so in the present study we construct
a more e�ective one, which solves the network exten-
sion task using a genetic approach.
The remainder for the paper is organized as follows.

First we present the applied network and reliability
models, and give the mathematical formulation of the
planning problem. Second, we describe the speci�c op-
erators, heuristics used in the genetic algorithm, then
give a detailed numerical study of the algorithm by
comparing it to the solution given in [2]. Finally, we
conclude the paper with a brief summary.

2 Problem Statement

As mentioned, our aim is to enhance the reliability
of an RNC-rooted subnetwork, in a cost optimal way.
During the extension of the network with extra links,
we have to consider topology constraints and tra�c
demands, besides the reliability expectations.

2.1 Network model

Let the communication network be modeled as a di-
rected graph G(N, E ), where N denotes the set of net-
work nodes including all the RBSs and the RNC, and
where E (E ⊆ N × N ) stands for the set of commu-
nication links. Our input is a single�connected tree
topology network, including parameters Ti, the tra�c
demand between RBS i ∈ N and the RNC, and Ci,j ,
the capacity of the link (i, j) ∈ E . Initially, Ci,j equals
to Taggri

, where Taggri
is the tra�c aggregated by RBS

i. During the optimization the initial set of links, and
the tra�c demands are considered to be �xed.
The input also includes black-box cost functions for

the RNC, RBSs and links, denoted by CRNC , CRBS (k)
and C link (i, j), respectively. These functions can re-
�ect several features of the given components (includ-
ing installation cost, upkeep, an so on).
The link cost C link (i, j) between sites i and j is typ-

ically represented by an increasing step�wise or piece�
wise function, and capable of modeling both wired
(leased-line, �ber, coax) and wireless (microwave) in-
terconnections.
The node cost functions of CRNC , CRBS (k) are com-

posed of several sub-costs regarding the capacity and
the number of ports, the number of processors, and so
on.

In addition, from the viewpoint of the planning pro-
cess, we have two important technological constraints
to be considered:

• Cascading constraint (L): The parameter li
(level), de�nes the length of the shortest path be-
tween the RNC and RBS i, and constraint L is the
upper bound for this parameter. This constraint
limits the maximum delay of communication in
the network, which is essential for real time ap-
plications.

• Degree constraint (D): The degree of an RBS (di)
is the number of links per RBS, including both
incoming and outgoing ones, and D is an upper
bound of this value. We note, that this is a rel-
atively weak limit factor, however, it can have a
signi�cant impact on reliability, if a strong reli-
ability expectation could be ful�lled only with a
dense network topology.

2.2 Reliability model

If we take the reliability into account during the net-
work planning, the complexity of the planning problem
can highly depend on the reliability model we choose.
If we assume multiple failures and mesh topologies, the
exact calculation of network reliability can be NP-hard
[10]. A good estimation of the all-terminal reliability
metric can be given using Monte Carlo simulation, but
even this one can be an expensive procedure if we use
iterative methods, and this calculation must be per-
formed in each iteration. Fortunately, in our case an
easier calculation can be made, because of the central-
ized structure of the network.
Originally, there is exactly one path between each

RBS and the RNC, containing several RBSs and links.
The availability function of these components is also
given as input, so the availability of the whole path
can be computed as given in (1),

A(P ) =
∏

e∈P

A(e) (1)

where A(e) is the availability of the e element in the
path.
If we extend the network with additional links, then

new paths are assigned for the RBSs beside the orig-
inal one. In that case, the availability of RBS i is
calculated by

Ai =
∑

Pa∈Pi
A(Pa)−∑

Pa,Pb∈Pi
A(Pa ∪ Pb)+∑

Pa,Pb,Pc∈Pi
A(Pa ∪ Pb ∪ Pc)−

...,

(2)



where Pi = {Pa, Pb...Pz} is the set of paths assigned
to RBS i, and Pa ∪ Pb ∪ ... ∪ Pz denotes the union of
elements in these paths.
In mesh networks usually two or more node-disjoint

paths are assigned for each tra�c demand. In the cur-
rent case, this protection scheme is not applicable due
to the large number of sites, so we protect the most
failure sensitive parts of the network only, as presented
in Fig. 2

RNC

ba

c d

Figure 2: Protection scheme

As we can see, only RBSs a and b has a full protec-
tion path, c is not protected, and d has a backup path
containing one edge common with the original path.
The additional link (a, b) is shared between two paths,
as there is no error case, when both backup paths need
to be used.
Using this protection scheme, it is important to �nd

the proper place for a backup link. The availability
of RBSs is not a perfect metric for this, since two
RBSs with the same availability can have di�erent im-
portance, due to the di�erent amount of tra�c ag-
gregated in them. That way, we de�ne parameters
Li = (1 − Ai) · Ti , and Laggr i

= (1 − Ai) · Taggr for
each RBS. The �rst parameter determines the loss of
the originated tra�c of RBS i, and we use the aver-
age of this variable (Lavg ) as a metric for the overall
network reliability. The second parameter de�nes the
loss for the aggregated tra�c in RBS i, an we use this
value to select the appropriate RBS to be protected.

2.3 Optimization task

Our goal is to extend the input network with addi-
tional links until we satisfy the constraint to the av-
erage tra�c loss, denoted by Llim . The optimization
problem is to minimize the total cost of the network
C , where

C = CRNC +
∑

k∈N,k 6=RNC CRBSk

+
∑

(i,j)∈E C link (i, j) (3)

subject to the constraint Lavg ≤ Llim .
Besides, the provided solution also has to satify the

following constraints:

• li ≤ L, di ≤ D where i ∈ N

• lj−li ∈ {0, 1}, where (i, j) ∈ E is a backup link. It
means we can create backup links between RBSs
on the same or neighbouring levels.

• the maximum number of extra links per RBS is 1

• every protection path must contain exactly 1
backup link. In other words, protection paths can
be at maximum one longer, than the appropriate
working ones.

3 Genetic Algorithm

The genetic algorithms are inspired by the well-known
genetic process, where populations of species slowly
evolve and adapt to the environment. The slow evo-
lution of populations is advanced by three main pro-
cedures, namely:

• Mutation, which provides the diversity of the pop-
ulation by making random changes in the genes
of individuals.

• Crossover, which supplies the spread over of the
advantageous features as the parents may mix
their successful genes in their o�spring.

• Selection, which lets only the best individuals sur-
vive the race for the resources of the environ-
ment.

Genetic algorithms are often used in case of opti-
mizations where analytical methods cannot be used.
In our case it seems to be a feasible, however, we also
know that a classical GA, using classical binary or real
operators can hardly give a solution that comparable
to the one provided in [2]. So we had to adapt our GA
operators to the speci�c problem.

3.1 Encoding

The �rst decision to make, is how to represent the net-
works as a genetic instances. As we mentioned, some
input parameters (�xed links, tra�c demands, etc.)
are considered to be constant, and these are the same
in all instances. In that way, two type of vector de-
scribe an extended network:

• The vector of extra (backup) links x, where xi =
j, if there is an existing backup link from RBS i
to RBS j.

• The vector of protection paths y, storing a list of
assigned protection paths for each RBS. As the
maximum length and number of protection paths
per RBS is limited by constraints given in 2.3, y
can be also a �xed size vector.

During the genetic optimization, each instance is
represented by a (x, y) pair. The standard operators
manipulate directly x, but also maintain y according
to the changes.



3.2 Objective function

Our task is a multiobjective optimization with con-
straint handling [8]. The genetic operators we use, do
not produce individuals, which violate the constraints,
except for Lavg ≤ Llim . The tra�c loss is regarded as
the part of our objective, so we have a two-dimensional
objective function f(x, y), where f1(x, y) = C and
f2(x, y) = Lavg .
In order to compare two instances in the two di-

mensional product space of f(x, y), we use the pref-
erence relation. In case of comparing instances U

and V having objective functions f
U

= f(xU , yU ) and
f

V
= f(xV , yV ), we prefer U to V ,

• If fU
2 , fV

2 ≤ Llim and fU
1 < fV

1 , or

• If Llim < fV
2 and fU

2 < fV
2

3.3 Mutation

We have the following demands on the mutation op-
erator:

• give diversity to the population

• create new backup links

• operate directly at the most failure sensitive parts
of the network

For realization of mutation we assembled two pro-
cedures:

M1 Insert an outgoing backup link to an unprotected
RBS .

M2 Modify the endpoint of an existing backup link.
This operation creates a new link in the same way
as M1, but also deletes an existing backup link.

The procedure of the mutation is as follows:

1. Select an individual S of the population in a ran-
dom way.

2. Create instance U as a replica of S.

3. Select RBS i. In case of M1, i is an RBSs with
high Laggr value, and with xU

i = 0 representing
that RBS i does not have any outgoing backup
link. In case of M2, i is randomly selected from
RBSs with xU

i 6= 0 .

4. Let nU
i be a list of the neighboring RBSs of RBS i,

representing a possible set of endpoints for backup
links.

5. Choose an RBS j from list nU
i by probabilistic

method, ensuring that a distant RBS has the
smallest chance to be selected, and change xU

i to
j.

3.4 Crossover

The operator of crossover aims to fuse the high re-
liability parts of two parent networks. It constructs
two o�spring, one with a higher and one with a lower
number of backup edges, and higher/lower reliability,
respectively. Therefore, using crossover we can purify
an over-secured network. As another e�ect we also
expect that the genes responsible for good properties
should spread over the population by crossing an av-
erage and a better instance.
The realization of the operator is as follows:

1. Select two parents (R, S) from the population
randomly.

2. Create two o�springs: U and V .

3. For genes xU
i ,x

V
i we decide whether to inherited

them from parent R or S:

- Let k and l denote the starting endpoints of the
links represented by xR

i and xS
i , respectively.

- IF Ak ∗ rnd() > Al,
THEN xU

i := xR
i and xV

i := xS
i ,

ELSE xU
i := xS

i and xV
i := xR

i ,
where rnd() returns a value from uniformly dis-
tributed range (0.75;1.25).

The use of the rnd() multiplier needs an explana-
tion. If we make the above comparison without this
randomization, then the inheritance would be deter-
ministic and we would get to two extreme o�springs,
which could hardly compete with other instances. In
order to eliminate this behavior, we use this random-
ization, where range of function rnd() is de�ned em-
pirically.

3.5 Selection

If we want to keep the number of instances under a
limit, generation by generation, we have to drop some
individuals of the population. At this point we must
consider two things:

- The best instances should not die, and mainly the
better instances should be kept.

- On the other hand, even a worse instance should
have the possibility to survive.

Therefore we use the k-Tournament [9] (more ex-
actly 2-Tournament) method, where the 2 opponents
are selected randomly and competed. The loser of the
competition dies out, and after a number of tourna-
ments, we reach the required size of population.
In this procedure, we use the previously introduced

preference relation, so we do not have to rank all the
items.



3.6 Enhancements

3.6.1 Disaster

While performing an evolution, after a couple of gener-
ations it can be realized that the population does not
evolve any more or the evolution slows down. The pop-
ulation in that case can have very similar instances,
and this low diversity is the reason to stuck. At this
point we need a drastic intervention, called disaster,
which is as follows : we decrease the size of the popula-
tion down to 2 - by making 2-tournaments - and then
apply several mutations on the remained networks and
on their mutated instances, to reach the original size
of the population. To create signi�cantly di�erent in-
stances, we use the M1 and M2 procedures several
times.

3.6.2 Path reduction

Using more backup paths o�ers a higher reliability,
but sometimes backup paths make only a negligible
reliability-enhancement. By dropping some ine�cient
backup paths we could decrease the capacity of links,
therefore the network becomes less expensive. This is
the reason to revise the backup paths of the network
(i.e.. the y vector of the instance) and create the so-
called path reduction procedure, which examines all
RBSs in the selected R instance:

• Using yR
i , collect all backup paths of RBS i into

the list PR
i ,

• For each Pj item of PR
i calculate AR

ij , denoting
the availability of RBS i when Pj is omitted from
the paths of RBS i

• If maxj(AR
ij) ≥ H · Ai, remove Pj of the set of

backup paths of RBS i and update yR
i accordingly.

In our case, H = 0.99 and chosen empirically.

3.7 Evolutionary process

Using the previously de�ned operators and extensions,
the evolutionary process is as follows:

• First, we create the initial population by mutat-
ing the input individual as described in procedure
disaster.

• In each evolutionary cycle (generation) we per-
form the followings:

1. Increase the population size by mutations and
crossovers.

2. Drop some instances using selection.

3. Evaluate the population: If there is no develop-
ment since some generations, apply a disaster
on the population and path reduction on all in-
dividuals. Then loop to the next cycle, except

the case when the maximal number of genera-
tions is reached or when no evolution occurred
since the last three disasters.

• As output we store the most preferable individ-
ual of the last population and this can be used as
input for a next evolutionary algorithm.

4 Numerical Results

In this section we examine the behavior of the genetic
algorithm, using several test cases. In [2], we de�ned
two algorithms, the Penalty Tree Algorithm (PTA),
and the Randomized Reliability Enhancement (RRE).
The �rst algorithm is able to create a preoptimized
tree topology RNC-subnetwork, while the second one
performs an extension on these networks to gain a
higher reliability output. During the tests, we use the
PTA resulted networks as input. On the other hand,
as our network, cost and reliability model is identical
to the one presented in [2], we can use the RRE as a
reference.
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Figure 3: GA and RRE extension costs in case of dif-
ferent network sizes

In the �rst test, we compared the cost of the network
extension resulted by the RRE and the evolutionary
algorithm (GA). We used di�erent network sizes, and
di�erent tra�c loss expectations (Llim ). Fig. 3 shows
network extension costs in case of networks containing



50, 100 and 200 RBSs. The presented values are aver-
ages of ten runs. The costs are normalized to cost of
the input networks, while the Llim expectation values
are expressed as a percentage of the average tra�c of
RBSs. (As Fig 3 shows, in the network containing 50
nodes, this initial average tra�c loss is 0.067 %, so the
additional cost is 0 until this value.)
As we can see, our GA gave better results in the

cases, when a weaker tra�c loss expectation (Llim )
was used. However, increasing the size of input net-
works, the intersection of the curves represented by
the two algorithms is place at higher Llim values. The
reason is the following: larger networks have larger ini-
tial tra�c loss value, since the average length of paths
between RBS and the RNC is bigger. Satisfying the
same Llim constraint, in case of larger networks, the
GA requires more additional links, and have a larger
search space, than in case of small ones.
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Figure 4: Joint use of GA and RRE

In the second test we examined the behavior of GA,
in case of preoptimized input networks. On Fig. 4, we
present extension costs of a network containing 100
RBS. Beside the cost of the GA and the RRE, a third
curve shows the results, when we used the RRE re-
sulted networks as an input for GA. As we can see,
the our evolutionary algorithm can further optimize
the outputs of RRE, giving a 1-2 % lower costs.

5 Conclusions
In this paper, we gave a solution for a network reli-
ability enhancement problem, where the objective is
to extend the a originally tree�topology network with

extra links, to satisfy a constraint for the average traf-
�c loss. A previously de�ned greedy heuristic called
RRE can solve this problem, however, it is not e�ec-
tive in case of weaker tra�c loss expectations. That
way, we constructed an evolutionary algorithm with
specialized operators and extrensions. During tests,
we found that create algorithm met or expectations,
as it gave better result than RRE in the cases mention
above. In addition, we realized that our GA can make
further optimization on RRE resulted networks, so the
joint use of the two algorithms provides the most e�-
cient solution.
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