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Abstract: - In this contribution we develop a theoretical statistical approach to predict the acceptable 
bandwidth tolerances for optical filter cascades in wavelength division multiplexing (WDM) networks. We 
also establish tolerances for the center frequency misalignments considering a statistical approach presented in 
a previous work. The optical filters analyzed have a trapezoidal shape, and different bandwidths are considered 
for the study. The analytical results are validated with system simulations. 
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1   Introduction 
WDM systems are evolving from point-to-point 
systems to transparent optical networks, in which 
wavelength channels are routed without opto-
electronic conversion. All-optical WDM networks 
with add-drop, routing and cross-connecting 
capabilities include several wavelength selective 
components. The concatenation of optical filters 
makes the system susceptible to filter pass-band 
misalignments arising from device imperfections, 
temperature variation and aging. The emission 
spectrum of the laser source may also be misaligned 
with the effective center frequency of the optical 
filters owing to manufacturing tolerances, aging, or 
operating conditions (for example temperature). 
Performance degradation in WDM systems may 
arise owing to optical filter misalignments and 
concatenation, combined with laser misalignments 
and chirp [1]. Another important degradation factor 
is the reduction of the filters bandwidth due to 
operation conditions and aging. 
     In a previous work we have developed a 
theoretical formulation to predict the allowable 
tolerances for the center frequency, considering 
cascades of different types of filters [2]. In this 
contribution we complement that study, presenting 
an analytical solution to establish tolerances for the 
optical filters bandwidth variation. The analytical 
results are validated with system simulations, 
considering optical filters with trapezoidal transfer 
functions.  
 
 
2   Theoretical Models 

In this section we present the theoretical statistical 
formulations to predict the allowable tolerances for 
the bandwidth and center frequency, considering 
optical filter cascades. 
 
2.1 Bandwidth Variation 
We consider that the filters used have, by means of 
the temperature distribution of their locations and/or 
by means of their fabrication tolerances, a 
bandwidth stochastic distribution that meets a 
Gaussian probability density function (PDF) with 
standard deviation σ (Hz). 
     The change in quality factor, Q, as the filter 
bandwidth varies, is assumed to follow the function 
presented in Fig. 1. Considering signal and filter 
bandwidths to be B and LB respectively, if the filter 
bandwidth is higher than fmi (with fmi=LB/2-B), the 
signal of the selected channel fits totally within the 
filter pass-band, and Q is maximum (Qmax). For 
lower bandwidths than fmi, Q decreases, with a 
variation that depends on the filter shape, the signal 
format, but for simplicity we will assume it is linear. 
Q is null for ∆f<LB/2, corresponding to unreal 
negative bandwidths, and therefore those values 
should not be considered; nevertheless the Gaussian 
approximation is assumed as a valid option, since 
we will consider standard deviation values that lead 
to a allowable maximum of bandwidth realizations 
in the negative part. 
     The evolution of the average Q, Qavg, as a 
function of σ, can be obtained by solving the 
integral: 
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For the assumed Q(∆f), Qavg can be obtained in the 
following closed form: 
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2.2 Center Frequency Misalignment 
For the center frequency distribution we have also 
considered a Gaussian PDF. 
     The change in Q factor when the filter center 
frequency is detuned by ∆f, is assumed to follow the 
function presented in Fig. 2. If the signal of the 
selected channel fits totally within the filter pass-
band, corresponding to values of detuning ∆f in the 
interval [-fmi;fmi], then Q is maximum. On the other 
hand, if the signal is totally out of the pass-band 
(|∆f|≥fma), then Q is null. In between, the variation 
depends on the filter shape, the signal format, so for 
simplicity we will assume it is linear. 
     For the assumed Q(∆f), Qavg can be obtained in 
the following closed form [2]: 
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2.3 Filter Cascading 
At the output of the ith filter, the signal presents, for 
a given σ, a degradation relatively to its quality at 
the input. At the input of the cascade, Q is 
maximum, and assuming that all the cascaded filters 
have the same characteristics, then Qmax i=Qmax and 
Qavg i=ηQavg. The parameter η represents some 
insertion penalty that the filter may introduce, by 
means of its transfer function shape and/or 
dispersion properties, relatively to an ideal filter 
(rectangular shape and linear phase) with the same 
bandwidth. 
     Thus, the average Q after a cascade of n filters, 
Qavg n, is given by [2]: 

( )[ ]navgnavg QQQQ maxmax η=  (4) 
 
 
3   Analytical and Simulation Results 
To test the presented analytical formulations we 
have simulated an 8×20 Gbit/s WDM system, with 
an optical path (single mode fiber, D=17 
ps/(nm.Km)) of length 5 Km, and filtered one 
channel considering trapezoidal shaped filters with 

 
Fig. 1 – Representation of the model’s Q factor for one 
channel (continuous line) and of a Gaussian distribution 
with standard deviation σ (dashed line) as a function of 
the bandwidth variation ∆f around LB/2. 
 

 
Fig. 2 – Representation of the model’s Q factor for one 
channel (continuous line) and of a Gaussian distribution 
with standard deviation σ (dashed line) as a function of 
the center frequency detuning ∆f (after [2]). 
 
variable bandwidth. The trapezoidal filters 
considered had no insertion loss and bandwidths (at 
0 dB) of 50 GHz and 80 GHz. The bandwidths at -
20 dB were 5 GHz higher than the 0 dB bandwidths 
in all cases. To observe the effect of filter cascading 
we have considered the isolated filter and 9 
cascaded filters, for each case. 
     Each test was performed 80 times and at each run 
the center frequency or bandwidth of the filter was 
changed randomly following a Gaussian distribution 
of standard deviation σ. The simulations were 
performed using PTDS from Virtual Photonics . 
     To obtain analytically the bandwidth allowable 
tolerances, we have used equation (2) with fmi=LB/2-
B as referred. To the center frequency allowable 
tolerances, we have considered fmi=LB/2-B and 
fma=LB/2+0.7B in equation (3). In all studied cases 
we considered the ideal value η=1.0. 
     As referred, for the Gaussian approximation 
(bandwidth variation PDF) to be valid, we have to 
use σ values that lead to an allowable maximum of 
bandwidth realizations in the negative part. For a 
maximum of 1%, considering the lowest filter 
bandwidth (50 GHz), σmax≅10.7 GHz. 
     We have considered maximal σ of 10 GHz and 
100 GHz, respectively for the bandwidth variation 
and center frequency misalignment PDFs. This 
factor of 10 between the maximal σ considered is 
based on experimental results obtained for a 
particular kind of optical filter, the fiber Bragg 
grating [3]. 



1 0
0

1 0
1

1 0
0

1 0
1

( G H z )

Q
a

v
g

                                              (a) 

1

10

1 10

σ  (GHz)

Q
av
g

 
                                              (b) 

Fig. 3 – Theoretical results of Qavg (a), with Qmax=10 and 
B=20 GHz, and the simulation results (b) for the referred 
setup, as a function of the allowed bandwidth variation 
standard deviation, for trapezoidal optical filters with 
bandwidths 80 GHz (no shape) and 50 GHz (circles), 
considering the single filter (heavy line) or a cascade of 9 
(dashed line). 

 
     In Fig. 3 and in Fig. 4 we present the analytical 
(a) and simulated (b) results of Qavg, as a function of 
the bandwidth variation and center frequency 
misalignment standard deviations, respectively. 
 
 
4   Results Discussion 
Comparing the results presented in Fig. 3 and Fig. 4, 
we notice that the simulated results follow closely 
the analytical ones, for the bandwidth variation and 
filter detuning allowable tolerances and curve 
tendencies, for single and cascaded filters. 
     The effect of cascading filters leads to a steeper 
dependence of Qavg on σ, due to a steeper shape of 
the filters spectra after cascading and to the 
increased delay changes near the pass-band borders. 
     We also verify that the effect of the center 
frequency misalignment is more problematic than 
the bandwidth variation one, due to a wider range of 
the standard deviations to be considered. 
 
 
5   Conclusions 
We have presented a simple theoretical formulation 
to predict the allowable tolerances for the bandwidth 
variation, considering cascades of trapezoidal 
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Fig. 4 – Theoretical results of Qavg (a), with Qmax=10 and 
B=20 GHz, and the simulation results (b) for the referred 
setup, as a function of the allowed filter detuning standard 
deviation, for trapezoidal optical filters with bandwidths 
80 GHz (no shape) and 50 GHz (circles), considering the 
single filter (heavy line) or a cascade of 9 (dashed line). 

 
optical filters, with distinct bandwidths, in WDM 
systems. We also confirmed the theoretical 
formulation presented in a previous work for the 
center frequency misalignments tolerances 
considering the referred type of filters. The 
analytical results follow closely the simulated ones 
for both situations analyzed. 

 
Acknowledgments: 
     This work was financed by the Portuguese 
scientific program PRAXIS XXI. 

 
References: 
[1] N. N. Khrais, A. F. Elrefaie, R. E. Wagner, S. 

Ahmed, Effect of cascaded misaligned optical 
(de)multiplexer on multiwavelength optical 
network performance, in OFC’1996, San Jose, 
USA, 1996, paper Thd4. 

[2] M. J. N. Lima, A. L. J. Teixeira, P. S. B. André, 
J. R. F. da Rocha, Center frequency tolerances of 
cascaded optical filters in WDM optical 
networks, in LEOS’2001, S. Diego, USA, 2001, 
paper ThK5. 

[3] P. S. André, J. L. Pinto, I. Abe, H. J. 
Kalinowski, O. Frazão, F. M. Araújo, Fiber 
Bragg grating for telecommunications 
applications: tuneable thermally stress enhanced 
OADM, J. Mic. Optoel., vol. 2, 2001, pp. 32-45. 


