

Analysis of a Decoding Approach for Goppa Codes

1LIRIDA ALVES DE BARROS NAVINER and 2ZOUHAIR BELKOURA
1 Département Communications et Electronique

Ecole Nationale Supérieure des Télécommunications
46, rue Barrault – 75637 – Paris CEDEX 13 - FRANCE

2 Department of Electrical and Electronic Engineering
Imperial College of Science, Technology and Medicine

London SWT 2BT - ENGLAND
lirida.naviner@enst.fr http://www.enst.fr

Abstract: — Algebraic-geometry family of codes contains sequences with excellent asymptotic behaviour, but few
work have been reported in the literature concerning their hardware implementation. In this paper, we investigate
an algorithm for decoding AG codes under the hardware feasibility point of view. We modify the original strategy
in order to obtain a new structure more suitable for hardware implementation.

Key Words: —Algebraic-geometry codes, linear codes, channel decoding, hardware implementation,VLSI.

1 Introduction
Algebraic-geometry (AG) codes are linear codes for
error correction that are constructed by means of
algebraic curves over finite fields. AG codes were
developed by Goppa [1, 2]. At the time of publishing, it
was not evident that these codes have better asymptotic
properties than existing ones, because the necessary
algebra had not been studied at the time. His publication
led to the open questions being answered and
subsequently the advantages of AG codes were shown.
Further work in developping AG codes was done by
Tsfasman, Vladuts, Zink, Justesen and others during the
1980s. Their results gave AG codes that exceeded a
number of constraining bounds [3]. Garcia and
Stichtenoth have simplified the construction and proofs
of AG codes significantly with their papers in the 1990s
[4, 5]. AG codes are asymptotically good, i.e. their rate
R>0 and relative distance δ>0. AG codes don't have a
strict interdependence between alphabet size q and code
length n. For some powerful codes, the alphabet has to
grow with codeword length such that q>n. This is not
the case with AG codes [6].

In despite to their good properties, few work have
been reported in the literature concerning the hardware
implementation of AG codes. In this work, we will
investigate an algorithm for AG codes under the
hardware feasibility point of view.

The paper is organized as follows. In Section 2 we
present some basics about construction and decoding of
codes based on algebraic geometry. In Section 3 we then
describe the Berlekamp-Massey-Sakata (BMS)
algorithm and hardware implementation issues of a such
algorithm are investigated. Also, some modifications of

the Sakata’s strategy are proposed in order to obtain a
structure more suitable for hardware implementation.
Finally some conclusions and perspectives of this work
are outlined in section 4.

2 Construction and Decoding of
Algebraic-geometry Codes
Current research work on algebraic geometry codes
centres around the design of AG codes and their
decoding [7]. The recent work of Xing and Ling uses
curves defined over an extension of qF in order to
construct good codes for small q [8]. This overcomes
the problem of having only few rational points on curves
for small q. In [9] [10], in addition to rational points, the
authors make use of places of small degree on the curve.
They also draw upon the idea of concatenated codes.
Again, this targets the problem of finding good codes for
small q. These and other works on AG codes and
variants thereof allow to find many improvements to
Brouwer's table. In fact, Brouwer publishes a table of
the best linear codes available, many of which are AG
codes [11]. Advances in code construction have been
made by studying different types of curves, notably
Hermitian curves, Klein curves and Elliptic curves [12].

Decoding algorithms are applied to perform error-
correction to received codewords. For any error
correction, error location and error evaluation needs to
be performed. The Berlekamp-Massey (BM) algorithm
was generalised by Sakata to be applied to AG codes
[13]. An efficient algorithm for computing unknown
syndromes using majority voting schemes, Hankel-block

mailto:lirida.naviner@enst.fr
http://www.enst.fr/

matrices and Gaussian elimination was presented in
[14]. O'Sullivan published a generalisation of the key
equation to Hermitian codes, a subclass of AG codes
[15]. Closer to the implementation side, Kotter presents
a modified BM algorithm in [16]. A useful overview of
other advances and algorithms can be found in [17].

3 Strategy Description of the Goppa
Codes Decoder
This section deals with the strategy implementation
proposed in [18, 19]1.

The structure supposes m+1 processors P(l), where
m is the dimension of the space L(mP∞), given by the
particular AG code C and the underlying curve χ . Each
processor consists of ρ2 basic cells Ci,j, where ρ is the
first nongap in the nongap sequence of χ . Fig. 1
presents a simplified diagram for the arrangement of the
processor and the cells. Control logic is not shown in the
processor.

c(1,ρ)c(1,ρ)

c(ρ,ρ)c(ρ,1)

…

…

…… …

c(1,ρ)c(1,ρ)

c(ρ,ρ)c(ρ,1)

…

…

…… …

(a)

P(0) P(1) P(2)P(0) P(1) P(2)

(b)

Fig 1. (a) A basic processor. (b) Processor arrangement.

The architecture is systolic in the sense that the

processors only communicate via the basic cells. A cell
Ci,j in P(l) communicates with cells Ci,j and/or Ci+1,j/Ci-1,j
in the processors P(l-1) and P(l+1). The data
communication is local and cells of the same processor
do not pass data between each other.

From the diagram, it is easy to see that the proposed
architecture is three-dimensional, an arrangement which
is highly unusual if not unheard of for simple VLSI
architectures. The reason to subdivide the structure in
different processors is their common control signals and
the calculation of those. These control signals are
calculated as a function of l and i.

1 The work on implementing Sakatas architecture was done with some

help of Professor Shojiro Sakata (University of Electro-Communications,
Tokyo, Japan) himself, who showed the kindness to give a few pieces of
advice

The desired output of the BMS algorithm is a matrix
of polynomials

,i jf
� which give error locating

polynomials. Although these are multivariate
polynomials, Sakata introduces a notation which allows
to write each polynomial as a vector containing the
coefficients ∈ GF(8). This vector has size k for a
polynomial of degree k and consequently the output
produced is a three-dimensional arrangement of
elements of GF(q) which can be indexed by

, ,i j kf
� [20].

Other than the algorithm of [20] which treats
complete polynomials in m+1 iterations, this version
implements a pipeline structure. This means that values
of index k are treated in P(l), whilst P(l-1) treats values
of index k-1.

The structure takes as input a three-dimensional
arrangement of values

, ,i j kv� ∈ GF(q) which are derived
from the syndromes [19, 20]. For the calculations, two
other auxiliary three-dimensional data structures are
generated,

, ,i j kg� ∈ GF(q) and
, ,i j kw� ∈ GF(q). These are

initially 0 and therefore cannot be considered as inputs,
but do influence the calculations. Systolicity is ensured
by a careful arrangement of cell positions Ci,j in the
different processors P(l).

For different l, the cell Ci,j finds itself in positions
' ,i j

c where ' (,)i l iφ= for a certain function φ [19]. It

should be noted that the indices i,j of Ci,j correspond to
the data indices and their position is only modified to
ensure systolicity. Every cell has 10 inputs of which one
is a control signal. The cell gives 4 outputs. The
operations in a cell Ci,j of processor P(l) are defined as
[20, 21]:

1, , , , , , (,) (1,) , , , , , (,) (1,)l i j k l i j k l i l i l i l j j k l i l if f d gκ κ κ κ+ + − + − += −� � � �
� � � (1)

1
, , , ,1, , , 1, , , l i l i j kl j j k l j j kg g or d f−

+ +=
�� � (2)

ˆ1, , , 1, , , , , , , (,)ˆ ˆl i j k l i j k l i l j j k l iv v d w κ+ + −= −� (3)
1

ˆ, , , , (,)1, , , 1, , ,ˆ ˆ ˆl i l i j k ll j j k l j j kw w or d v κ
−

++ += (4)

Note that the index l represents the processor

number. The coefficients ˆ(,)l iκ , (,)l iκ� and (,)j l iη= are
predetermined integer values that are calculated from
the curve characteristics (namely the set of pole orders
[19]). By definition, 1 j ρ≤ ≤ , which means that j
merely defines a rule for dataflow between cells. The
calculation of

1, , ,l j j kg +
� and

1, , ,ˆ l j j kw +
 is administered by a

one bit control flag generated by the control logic. The
left value is selected for flag=0. Finally, dl,i is a
coefficient and equals

ˆ, , , (,)l̂ i j lv κ
.

The control logic computes two control signals cl,i
and sl,i. These are integer values. Again, these depend
largely on l and i. Using these, the control logic

determines the values
1,l jc +

 and
1,l is +

 as well as the “flag”
bit according to the following:

, ,,flag = (0) ((,))l i l il jd c l i sκ≠ ∧ < − (5)

1, ,

1, ,

(,)
if flag = 1

(,)
l i l j

l j l j

s l i c
c l i s

κ
κ

+

+

= −
⇒ = −

 (6)

1, ,

1, ,

if flag = 0 l i l i

l j l j

s s
c c

+

+

=
⇒ =

 (7)

Again, (,)l iκ a value that is determined from the
curve characteristics. From the re-definition of the cell
equations given in [21], it can be seen that there are
several modifications in the indices k. In fact, a cell Ci,j
in processor P(l) will have to take values with indices k,
k-1, ˆ(,)k l iκ− , ˆ(,)k l iκ+ as input.

Assume a processor P(l) treats values with index k
at a given time. Providing values with indices smaller
thank k consists of adding delayers to the structure.
However, to implement the input of a “future” value,
indexed ˆ(,)k l iκ+ , the whole processing has to be
delayed by ˆ(,)l iκ cycles, during which the values

, , ,l i j kf
� ,

, , ,l j j kg� ,
, , ,l̂ i j kv and

, , ,ˆ l j j kw have to be stored until values with
indices ˆ(,)k l iκ+ are available. Moreover, the value

ˆ, , , , (,)ˆl i l i j l id v κ= can only be calculated after ˆ(,)l iκ values
have been treated. Since dl,i is needed for treatment of
values with index smaller than ˆ(,)l iκ as well, all these
have to be delayed until dl,i is known. This introduces
more wasteful overhead.

In order to present a feasible example
implementation of the proposed architecture, the three-
dimensional structure in the original proposal would
have to be mapped into two dimensions. Such a
mapping would be easiest if the width of one of the
three dimensions could be reduced to 1 gate. In the
direction of the dataflow, there are always m + 1
processors, therefore this does not provide a possibility
for projection on 2-D.

By examining closely the interconnections between
the different cells Ci,j, in two processors P(l) and P(l+1)
however, it can be seen that there is no interaction
between columns, i.e. between cells with different j
index. A proposed mapping would thus consist of
placing the columns above each other instead of next to
each other (see Fig. 2). The only obvious disadvantage
of this rearrangement is the fact that every row i actually
shares common control signals. Whilst the transmission
of those could easily be done if all the relevant cells are
in one row, the penalties of routing could be significant
for larger circuits. However, since this rearrangement
seems the only straightforward way to a feasible
implementation, these penalties remain subject to later
examination. For the size of this implementation, the

penalties due to the rearrangement are zero.
To properly design the circuit, a number of values

and coefficients had to be computed from the underlying
curve 3 3 3: X Y Y Z Z Xχ + = for the code (,13)C D PΩ ∞ as for
the example used by Kotter [16]. Therefore we have
m+1 = 14 processors P(l) , 0≤l ≤13. The curve has
genus g = 3 and has 24 rational points, one of which is
P∞ . The code has length n = 23, dimension k = 12 and
minimum distance dmin = 9. The gaps of the curve are
given {1, 2, 4}. From this, the set of pole orders

0{ | } {0,3 (),5,6,7,8, }lO o l ρ= ∈ = = …Z are determined.

c(i,1)

…

c(i,2)

c(i, ρ)

c(1,ρ)c(1,ρ)

c(ρ,ρ)c(ρ,1)

…

…

…… …

c(i,1)

…

c(i,2)

c(i, ρ)

c(i,1)

…

c(i,2)

c(i, ρ)

c(1,ρ)c(1,ρ)

c(ρ,ρ)c(ρ,1)

…

…

…… …

c(1,ρ)c(1,ρ)

c(ρ,ρ)c(ρ,1)

…

…

…… …

(a)

P(m)P(1)P(0) P(m)P(1)P(0)

(b)
Fig. 2. (a) Mapping 2-D processor to 1-D processor.

(b) Resulting 2-D structure.

A number of further values necessary to determine
the interconnections between cells and other relevant
details had to be computed from this. These are shown
in the definitions below. As before, the index l
corresponds to the processor and i,j to the cell or data
indices.

() min{ | 1mod } (1)i
l lo o O o i iρ ρ= ∈ ≡ − ≤ ≤ (8)

() ()(,)
(,)

i i j

i
l

o j k O o o k
if o j k o

ρ∈ = + +
=

 (9)

(,) {1, , } (1mod) 1ll i oη ρ ρ∈ = + +… (10)
() (,)

0(,) () /
(,) (,)

i l i
ll i o o o
else l i l i undefined

ηκ ρ
η κ

∈ = − −
= =

Z (11)

()() (1) / , 1ii o i iκ ρ ρ= − + ≤ ≤ (12)
()(,) ((,) 1) /i

ll i o o l iκ η ρ= − − +� (13)
() (,) ()i l i iκ κ κ= +� � (14)

The derived values from (8) to (14) have some

relevant properties for the architecture. Firstly, (,)l iη
always takes a value between 1 and ρ , 1 (,)l iη ρ≤ ≤ . For

(,)l iκ , (,)l iκ� and ˆ(,)l iκ it is known that they can be any
positive integer, 0ˆ(,), (,), (,)l i l i l iκ κ κ ∈� Z . Finally, from
the definition of (,)l iκ� follows that the value of

(1,)l iκ +� is never exceeds the preceding value by more
than 1, i.e. (,) (1,) (,) 1l i l i l iκ κ κ≤ + ≤ +� � � .

4 Conclusions and Future Work
AG codes provide the tools to construct new classes of
error-correcting codes with properties superior to the
codes used today. Nevertheless, not many research can
be found concerning their hardware implementation and
it has been the motivation for this work.

We have investigated the hardware implementation
issues of the BMS decoding strategy proposed by
Sakata. We have modified the original strategy to obtain
a more suitable hardware implementation by a 3-D to 2-
D structure mapping. We have evaluated the impact of
each equation under a hardware point of view. This is
essential to obtain a efficient VLSI. Actual work
includes a fine cost estimation in terms of logic gate
count, and a simulated and validated for synthesis
VHDL description of the decoder. Also we are
considering a modified structure to take into account the
recent algorithm modifications [21].

References
[1] V. D. Goppa, "A new class of linear error-

correcting codes," Problems of Information Theory
6, pp. 207-212, 1970.

[2] V. D. Goppa, "Codes Associated with Divisors,"
Problems of Information Transmission 13, pp. 22-
26, 1977.

[3] M. A. Tsfasman, S. G. Vladut, and T. Zink,
"Modular curves, Shimura curves and Goppa
codes, better than Varshamov-Gilbert bound,"
Math. Nachr. 104, pp. 13-28, 1982.

[4] A. Garcia and H. Stichtenoth, "A tower of Artin-
Schreier extensions of function fields attaining the
Drinfeld-Vladut bound," Inventiones
Mathematicae, vol. 121, pp. 211-222, 1995.

[5] A. Garcia and H. Stichtenoth, "On the asymptotic
behaviour of some towers of function fields over
finite fields," Journal of Number Theory, vol.
61(2), pp. 248-273, 1996.

[6] L. H. C. Lee, Error Control Block Codes: Artech
House Publishers, 2000.

[7] G. Lachaud, M. A. Tsfasman, J. Justesen, and V.
K.-W. Wei, "Introduction to the Special lssue on
Algebraic Geometry Codes," IEEE Transactions on
Information Theory, vol. 41, pp. 1545, 1995.

[8] C. Xing and S. Ling, "A class of linear codes with
good parameters from algebraic curves," IEEE
Transactions on Information Theory, vol. 46, pp.
1527 - 1532, 2000.

[9] D. Cunsheng, H. Niederreiter, and X. Chaoping,

"Some new codes from algebraic curves," IEEE
Transactions on Information Theory, vol. 46, pp.
2638 - 2642, 2000.

[10] C. Xing, H. Niederreiter, and K. Y. Lam, "A
Generalization of Algebraic-Geometry Codes,"
IEEE Transactions of Information Theory, vol. 45,
pp. 2498-2501, 1999.

[11] A. E. Brouwer, "Bounds on Min Distance of Linear
Codes, "http://www.in.tue.nl/~aeb/voorlincod.html,
2002.

[12] I. Blake, C. Hegaard, T. Hoholdt, and V. K. Wei,
"Algebraic Geometry Codes," IEEE Transactions
of Information Theory, vol. 44, pp. 2596-2618,
1998.

[13] S. Sakata, "Extension of the Berlekamp-Massey
algorithm to N dimensions," Informat. Comput.,
vol. 84, pp. 207-239, 1990.

[14] G. Feng, V. K. Wei, T. R. N. Rao, and K. K.
Tzeng, "Simplified Understanding and Efficient
Decoding of a Class of Algebraic-Geometric
Codes," IEEE Transactions of Information Theory,
vol. 40, 1994.

[15] M. E. O'Sullivan, "Decoding of Hermitian codes:
the key equation and efficient error evaluation,"
IEEE Transactions on Information Theory, vol. 46,
pp. 512 - 523, 2000.

[16] R. Kotter, "A fast parallel implementation of a
Berlekamp-Massey algorithm for algebraic-
geometric codes," IEEE Transactions on
Information Theory, vol. 44, pp. 1353 - 1368, 1998.

[17] T. Hoholdt and R. Pellikaan, "On the Decoding of
Algebraic-Geometric Codes," IEEE Transactions
of Information Theory, vol. 41, 1995.

[18] S. Sakata and M. Kurihara, "A systolic array
architecture for implementing a fast parallel
decoding algorithm of one-point AG codes,"
presented at Proceedings of IEEE International
Symposium on Information Theory, Ulm,
Germany, 1997.

[19] S. Sakata and M. Kurihara, "A Systolic Array
Architecture for Fast Decoding of One-Point AG
Codes and Scheduling of Parallel Processing,"
Proceedings of AAEC-14, Springer, pp. 302-313,
1999.

[20] S. Sakata, "A Vector Version of the BMS
Algorithm for Implementing Fast Erasure-and-
Error Decoding of One-Point AG Codes,"
presented at AAEC, 1997.

[21] S. Sakata and H. Matsui, "BMS Algorithm."
Manuscript unpublished, 2002.

	1	Introduction
	2	Construction and Decoding of Algebraic-geometry Codes
	Strategy Description of the Goppa Codes Decoder
	4	Conclusions and Future Work
	References

