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Abstract: — Algebraic-geometry family of codes contains sequences with excellent asymptotic behaviour, but few 
work have been reported in the literature concerning their hardware implementation. In this paper, we investigate 
an algorithm for decoding AG codes under the hardware feasibility point of view. We modify the original strategy 
in order to obtain a new structure more suitable for hardware implementation. 
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1 Introduction 
Algebraic-geometry (AG) codes are linear codes for 
error correction that are constructed by means of 
algebraic curves over finite fields. AG codes were 
developed by Goppa [1, 2]. At the time of publishing, it 
was not evident that these codes have better asymptotic 
properties than existing ones, because the necessary 
algebra had not been studied at the time. His publication 
led to the open questions being answered and 
subsequently the advantages of AG codes were shown. 
Further work in developping AG codes was done by 
Tsfasman, Vladuts, Zink, Justesen and others during the 
1980s. Their results gave AG codes that exceeded a 
number of constraining bounds [3]. Garcia and 
Stichtenoth have simplified the construction and proofs 
of AG codes significantly with their papers in the 1990s 
[4, 5]. AG codes are asymptotically good, i.e. their rate 
R>0 and relative distance δ>0. AG codes don't have a 
strict interdependence between alphabet size q and code 
length n. For some powerful codes, the alphabet has to 
grow with codeword length such that q>n. This is not 
the case with AG codes [6]. 

In despite to their good properties, few work have 
been reported in the literature concerning the hardware 
implementation of AG codes. In this work, we will 
investigate an algorithm for AG codes under the 
hardware feasibility point of view.  

The paper is organized as follows. In Section 2 we  
present some basics about construction and decoding of 
codes based on algebraic geometry. In Section 3 we then 
describe the Berlekamp-Massey-Sakata (BMS) 
algorithm and hardware implementation issues of a such 
algorithm are investigated. Also, some modifications of 

the Sakata’s strategy are proposed in order to obtain a 
structure more suitable for hardware implementation. 
Finally some conclusions and perspectives of this work 
are outlined in section 4. 

 
 

2 Construction and Decoding of 
Algebraic-geometry Codes  
Current research work on algebraic geometry codes 
centres around the design of AG codes and their 
decoding [7]. The recent work of Xing and Ling uses 
curves defined over an extension of qF  in order to 
construct good codes for small q [8]. This overcomes 
the problem of having only few rational points on curves 
for small q. In [9] [10], in addition to rational points, the 
authors make use of places of small degree on the curve. 
They also draw upon the idea of concatenated codes. 
Again, this targets the problem of finding good codes for 
small q. These and other works on AG codes and 
variants thereof allow to find many improvements to 
Brouwer's table. In fact, Brouwer publishes a table of 
the best linear codes available, many of which are AG 
codes [11]. Advances in code construction have been 
made by studying different types of curves, notably 
Hermitian curves, Klein curves and Elliptic curves [12]. 

Decoding algorithms are applied to perform error-
correction to received codewords. For any error 
correction, error location and error evaluation needs to 
be performed. The Berlekamp-Massey (BM) algorithm 
was generalised by Sakata to be applied to AG codes 
[13]. An efficient algorithm for computing unknown 
syndromes using majority voting schemes, Hankel-block 
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matrices and Gaussian elimination was presented in 
[14]. O'Sullivan published a generalisation of the key 
equation to Hermitian codes, a subclass of AG codes 
[15]. Closer to the implementation side, Kotter presents 
a modified BM algorithm in [16]. A useful overview of 
other advances and algorithms can be found in [17]. 

 
 

3 Strategy Description of the Goppa 
Codes Decoder  
This section deals with the strategy implementation 
proposed in [18, 19]1.  

The structure  supposes m+1 processors P(l), where 
m is the dimension of the space L(mP∞), given by the 
particular AG code C and the underlying curve χ . Each 
processor consists of ρ2 basic cells Ci,j, where ρ is the 
first nongap in the nongap sequence of χ . Fig. 1 
presents a simplified diagram for the arrangement of the 
processor and the cells. Control logic is not shown in the 
processor. 
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Fig 1.  (a) A basic processor. (b) Processor arrangement. 
 
The architecture is systolic in the sense that the 

processors only communicate via the basic cells. A cell 
Ci,j in P(l) communicates with cells Ci,j and/or Ci+1,j/Ci-1,j 
in the processors P(l-1) and P(l+1). The data 
communication is local and cells of the same processor 
do not pass data between each other.  

From the diagram, it is easy to see that the proposed 
architecture is three-dimensional, an arrangement which 
is highly unusual if not unheard of for simple VLSI 
architectures. The reason to subdivide the structure in 
different processors is their common control signals and 
the calculation of those. These control signals are 
calculated as a function of l and i. 

                                                           
1 The work on implementing Sakatas architecture was done with some 

help of Professor Shojiro Sakata (University of Electro-Communications, 
Tokyo, Japan) himself, who showed the kindness to give a few pieces of 
advice 

The desired output of the BMS algorithm is a matrix 
of polynomials 

,i jf
�  which give error locating 

polynomials. Although these are multivariate 
polynomials, Sakata introduces a notation which allows 
to write each polynomial as a vector containing the 
coefficients ∈ GF(8). This vector has size k for a 
polynomial of degree k and consequently the output 
produced is a three-dimensional arrangement of 
elements of GF(q) which can be indexed by 

, ,i j kf
�   [20].  

Other than the algorithm of [20] which treats 
complete polynomials in m+1 iterations, this version 
implements a pipeline structure. This means that values 
of index k are treated in P(l), whilst P(l-1) treats values 
of index k-1.  

The structure takes as input a three-dimensional 
arrangement of values 

, ,i j kv�  ∈ GF(q) which are derived 
from the syndromes [19, 20]. For the calculations, two 
other auxiliary three-dimensional data structures are 
generated, 

, ,i j kg�  ∈ GF(q) and 
, ,i j kw�  ∈ GF(q). These are 

initially 0 and therefore cannot be considered as inputs, 
but do influence the calculations. Systolicity is ensured 
by a careful arrangement of cell positions Ci,j in the 
different processors P(l).  

For different l, the cell Ci,j finds itself in positions 
' ,i j

c  where ' ( , )i l iφ=  for a certain function φ  [19]. It 

should be noted that the indices i,j of Ci,j correspond to 
the data indices and their position is only modified to 
ensure systolicity. Every cell has 10 inputs of which one 
is a control signal. The cell gives 4 outputs. The 
operations in a cell Ci,j of processor P(l) are defined as 
[20, 21]: 

1, , , , , , ( , ) ( 1, ) , , , , , ( , ) ( 1, )l i j k l i j k l i l i l i l j j k l i l if f d gκ κ κ κ+ + − + − += −� � � �
� � �   (1) 

1
, , , ,1, , , 1, , , l i l i j kl j j k l j j kg g or d f−

+ +=
�� �       (2) 

ˆ1, , , 1, , , , , , , ( , )ˆ ˆl i j k l i j k l i l j j k l iv v d w κ+ + −= −�      (3) 
1

ˆ, , , , ( ,)1, , , 1, , ,ˆ ˆ ˆl i l i j k ll j j k l j j kw w or d v κ
−

++ +=      (4) 
 
Note that the index l represents the processor 

number. The coefficients ˆ( , )l iκ , ( , )l iκ�  and ( , )j l iη=  are 
predetermined integer values that are calculated from 
the curve characteristics (namely the set of pole orders 
[19]). By definition, 1 j ρ≤ ≤ , which means that j  
merely defines a rule for dataflow between cells. The 
calculation of 

1, , ,l j j kg +
�   and 

1, , ,ˆ l j j kw +
 is administered by a 

one bit control flag generated by the control logic. The 
left value is selected for flag=0. Finally, dl,i   is a 
coefficient and equals 

ˆ, , , ( ,)l̂ i j lv κ
.  

The control logic computes two control signals cl,i 
and sl,i. These are integer values. Again, these depend 
largely on l and i. Using these, the control logic 



 

determines the values 
1,l jc +

 and 
1,l is +

 as well as the “flag” 
bit  according to the following: 

, ,,flag = ( 0) ( ( , ) )l i l il jd c l i sκ≠ ∧ < −     (5) 

1, ,

1, ,

( , )
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( , )
l i l j

l j l j

s l i c
c l i s

κ
κ

+

+

= −
⇒  = −

     (6) 

1, ,

1, ,

if flag = 0 l i l i

l j l j

s s
c c

+

+

=
⇒  =

      (7) 

Again, ( , )l iκ  a value that is determined from the 
curve characteristics. From the re-definition of the cell 
equations given in [21], it can be seen that there are 
several modifications in the indices k. In fact, a cell Ci,j 
in processor P(l) will have to take values with indices k, 
k-1, ˆ( , )k l iκ− , ˆ( , )k l iκ+  as input. 

Assume a processor P(l) treats values with index k 
at a given time. Providing values with indices smaller 
thank k consists of adding delayers to the structure. 
However, to implement the input of a “future” value, 
indexed ˆ( , )k l iκ+ , the whole processing has to be 
delayed by ˆ( , )l iκ  cycles, during which the values 

, , ,l i j kf
� , 

, , ,l j j kg� , 
, , ,l̂ i j kv  and

, , ,ˆ l j j kw  have to be stored until values with 
indices ˆ( , )k l iκ+  are available. Moreover, the value 

ˆ, , , , ( , )ˆl i l i j l id v κ=  can only be calculated after ˆ( , )l iκ  values 
have been treated. Since dl,i is needed for treatment of 
values with index smaller than ˆ( , )l iκ  as well, all these 
have to be delayed until dl,i is known. This introduces 
more wasteful overhead. 

In order to present a feasible example 
implementation of the proposed architecture, the three-
dimensional structure in the original proposal would 
have to be mapped into two dimensions. Such a 
mapping would be easiest if the width of one of the 
three dimensions could be reduced to 1 gate. In the 
direction of the dataflow, there are always m + 1 
processors, therefore this does not provide a possibility 
for projection on 2-D.  

By examining closely the interconnections between 
the different cells Ci,j, in two processors P(l) and P(l+1) 
however, it can be seen that there is no interaction 
between columns, i.e. between cells with different j 
index. A proposed mapping would thus consist of 
placing the columns above each other instead of next to 
each other  (see Fig. 2). The only obvious disadvantage 
of this rearrangement is the fact that every row i actually 
shares common control signals. Whilst the transmission 
of those could easily be done if all the relevant cells are 
in one row, the penalties of routing could be significant 
for larger circuits. However, since this rearrangement 
seems the only straightforward way to a feasible 
implementation, these penalties remain subject to later 
examination. For the size of this implementation, the 

penalties due to the rearrangement are zero. 
To properly design the circuit, a number of values 

and coefficients had to be computed from the underlying 
curve 3 3 3: X Y Y Z Z Xχ + =  for the code ( ,13 )C D PΩ ∞ as for 
the example used by Kotter [16]. Therefore we have 
m+1 = 14 processors P(l) , 0≤l ≤13. The curve has 
genus g = 3 and has 24 rational points, one of which is 
P∞ . The code has length n = 23, dimension k = 12 and 
minimum distance dmin = 9. The gaps of the curve are 
given {1, 2, 4}. From this, the set of pole orders 

0{ | } {0,3 ( ),5,6,7,8, }lO o l ρ= ∈ = = …Z are determined. 
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Fig. 2.  (a) Mapping 2-D processor  to 1-D processor. 

(b) Resulting 2-D structure. 
 

A number of further values necessary to determine 
the interconnections between cells and other relevant 
details had to be computed from this. These are shown 
in the definitions below. As before, the index l 
corresponds to the processor and i,j to the cell or data 
indices. 

( ) min{ | 1mod } (1 )i
l lo o O o i iρ ρ= ∈ ≡ − ≤ ≤    (8) 

( ) ( )( , )
( , )

i i j

i
l

o j k O o o k
if o j k o

ρ∈ = + +
=

      (9) 

( , ) {1, , } ( 1mod ) 1ll i oη ρ ρ∈ = + +…      (10) 
( ) ( , )

0( , ) ( ) /
( , ) ( , )

i l i
ll i o o o
else l i l i undefined

ηκ ρ
η κ

∈ = − −
= =

Z    (11) 

( )( ) ( 1) / , 1ii o i iκ ρ ρ= − + ≤ ≤       (12) 
( )( , ) ( ( , ) 1) /i

ll i o o l iκ η ρ= − − +�       (13) 
( ) ( , ) ( )i l i iκ κ κ= +� �          (14) 

 
The derived values from (8) to (14) have some 

relevant properties for the architecture. Firstly, ( , )l iη  
always takes a value between 1 and ρ , 1 ( , )l iη ρ≤ ≤ . For 

( , )l iκ , ( , )l iκ�  and ˆ( , )l iκ  it is known that they can be any 
positive integer, 0ˆ( , ), ( , ), ( , )l i l i l iκ κ κ ∈� Z . Finally, from 
the definition of ( , )l iκ� follows that the value of 

( 1, )l iκ +� is never exceeds the preceding value by more 
than 1, i.e. ( , ) ( 1, ) ( , ) 1l i l i l iκ κ κ≤ + ≤ +� � � . 



 

 
 

4 Conclusions and Future Work 
AG codes provide the tools to construct new classes of 
error-correcting codes with properties superior to the 
codes used today. Nevertheless, not many research can 
be found concerning their hardware implementation and 
it has been the motivation for this work.  

We have investigated the hardware implementation 
issues of the BMS decoding strategy proposed by 
Sakata. We have modified the original strategy to obtain 
a more suitable hardware implementation by a 3-D to 2-
D structure mapping. We have evaluated the impact of 
each equation under a hardware point of view. This is 
essential to obtain a efficient VLSI.  Actual work 
includes a fine cost estimation in terms of logic gate 
count, and a simulated and validated for synthesis 
VHDL description of the decoder. Also we are 
considering a modified structure to take into account the 
recent algorithm modifications [21]. 
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