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Abstract: The cars we are familiar with have circular wheels. Here, we consider cars whose wheels are not 
circular and nevertheless these cars move smoothly.  
A mathematical development characterizing the condition for a smooth motion of exotic wheels is presented. 
This mathematical development has been tested on different simulation environments. Finally, we introduce a 
specific virtual environment developed to support an easy presentation of mathematical concepts related with 
this situation. 
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1   Introduction 
Usually, cars have circular wheels and run on flat 
roads. Is it possible for cars to have wheels with a 
more or less exotic geometrical shape and provide a 
smooth motion? Does smooth motion depend only on 
the geometry of the wheel or also on the geometry of 
the track? To obtain a smooth motion, can the 
geometries of the wheel and the track be 
independent? 
Can you imagine how the motion of a circular wheel 
would be along one of these tracks? Would the center 
still move along a straight line? Would the motion be 
smooth or jerky? 
If we observe attentively the motion of a common 
wheel, we conclude that its center describes a 
rectilinear trajectory. Is this the secret of motion 
without jerks? 
If the track is wavy or saw-edged or has any other 
exotic shape, the shape of the wheel must adapt itself 
to the shape of the track for the axial center of the 
wheel to move along a straight line and for the 
motion to be smooth. This is what happens with these 
small cars.  

Given a specific track, the problem is: How to find 
the convenient shape of the wheels that are adapted to 
it? Is it possible to have several wheels for a specific 
track? 
Based on the mathematical background, we 
developed a virtual environment to show how we 
could obtain a smooth motion with several 
geometries for the wheel. As it will be seen, the 
geometries of the wheel and the track are not 
independent.  
 
 
2   The wheel, a great invention 
The wheel is an outstanding invention in the history 
of Humanity. It occurred in the fourth millennium 
before Christ and is contemporary to the discovery of 
writing and of metals. It is an interesting coincidence 
that the discoveries of writing and of vehicles with 
wheels, although having nothing in common, are 
nevertheless coeval.  
It is difficult to imagine our planet without the wheel. 
As Martin Garden states, it is hard to conceive an 
advanced civilization without wheels and avows his 



surprise for the evolution of species not having 
chosen the wheel as a means of animal locomotion. 
After all, who has not heard of the fabulous snake in 
arc, which bites its tail and rolls away in a coil? 
Nothing prevents us from imagining that in other 
planets, rolling creatures do exist and roll wildly 
through the cosmos. 
In the books of Oz, G. L. Frank gives life to the 
"rollers" which have four wheels instead of four legs 
and to the bird Ork which flies with the help of a 
propeller in its tail. H. G. Wells, in "The war of the 
worlds", creates a fiction over a developed 
civilization that does not utilize the wheel in its 
machinery. 
Traditionally, it is admitted that the wheel was 
invented in the Mesopotamia on the account of the 
existence in this site of pictures of mechanisms with 
wheels dated from 3 000 a. C. and archeological 
vestiges of massive wheels from 2 700 a. C.. In the 
middle of the XX century, Russian archeologists 
found in the Caucasus mechanical models of cars 
with wheels, suggesting that the wheel may have 
appeared in southern Russia earlier than in 
Mesopotamia. The wheel may have been invented, 
independently, in several geographical places or may 
have been disseminated from a single center by 
cultural diffusion. It is hard to make a definitive 
judgment on this matter. 
A moving wheel has paradoxal properties. The upper 
points have higher speed than those closer to the 
ground. A point on the wheel attains its maximum 
speed precisely when it is on the top, and minimum 
speed (zero) when it touches the ground. In the 
wheels of the train, whose borders come slightly 
below the rails, there are points moving backwards. 
One of the most subtle paradoxes of the wheel is 
known as Aristotle's wheel. 
 
 
3   Aristotle's Wheel 
Aristotle's wheel is the name under which a paradox 
of the wheel, originally presented in his Mecanica, is 
known. Galileo, Descartes, Fermat, among many 
others, contributed to clarify this question, which 
consists in the following. 
  

 
Fig. 1 - Two solidly bound wheels 

 
Lets us consider 2 solidly bound wheels (Fig. 1). 
When the larger wheel rolls from A to B, the outer 

ring of the smaller wheel rolls from C to D, along a 
parallel line. In each instant, a single point of the 
outer ring of the larger wheel touches the line AB and 
a single point of the smaller wheel touches CD. No 
point is excluded from any one of the circles so their 
length must be the same. 
To solve the paradox, Galileo imagined what would 
happen if the two wheels were replaced by regular 
polygons, for instance two squares (Fig. 2). While the 
larger square performs a complete turn along AB, the 
sides of the smaller square coincide with CD on four 
line segments separated by three gaps. For pentagonal 
wheels, the smaller wheel would jump four gaps, and 
so on for polygons with larger number of sides, with 
the number of gaps increasing, but their length 
decreasing. In the limiting case, we would have a 
circular polygon with an infinite number of sides and 
infinitely many gaps, each of which infinitely small. 
 

 
Fig. 2 – The Galileo’s gaps 

 
But how to explain that, having infinitely many gaps, 
infinitely small, the smaller wheel travels a finite 
distance while the larger wheel moves uniformly? 
Galileo’s "gaps" are the problematic infinitesimals 
that so many problems would raise to the 
development of calculus.  
 
 
4   Instantaneous center of rotation 
The concept of instantaneous center of rotation will 
be useful. If a plane figure moves turning around a 
fixed point O called center of rotation, any point of 
the moving figure will describe an arc of circle. At 
each instant, the velocity v of the point A is tangent to 
the circle described by A, that is, it is perpendicular to 
the segment OA (Fig. 3). 

  

 
Fig. 3 – Rotation of a figure around a fixed point 

 
It may be mathematically shown that the plane 
motion of a rigid figure is, instantaneously, either a 
translation or a rotation around a point called 
instantaneous center of rotation. The point O, being 



the instantaneous center of rotation, will remain 
instantaneously motionless (center of instantaneous 
standstill), its velocity vanishes, while the velocity of 
any other point A is perpendicular to the line segment 
OA.    
The concept arises in a memory of Chasles of 1830, 
although this terminology only appears in later works 
of the author. 
Let us consider a rigid figure F that moves in the 
plane rolling without sliding over a curve L, Fig. (4). 
We say that F rolls over L if, at each instant, there is a 
single point of contact of F with L and we say that it 
rolls without sliding if the point of contact has zero 
velocity, that is, if this point is the instantaneous 
center of rotation of F. Summarizing, we may say 
that if the figure F rolls without sliding over a fixed 
curve L, the point of contact is the instantaneous 
center of rotation. Denoting by O this point, an 
arbitrary point A of F possesses an instantaneous 
velocity perpendicular to the line segment OA. 

  

 
Fig. 4 – Rigid figure moving in the plane, rolling 

without sliding over a curve. 
 
 
5   The smooth motion of exotic wheels: 

mathematical development 
The solution to the problem of the exotic wheels 
requires solving a differential equation. Let us 
consider non-circular wheels which roll without 
sliding over a surface with non-rectilinear profile 
(Fig. 5). It is required that the trajectory of the wheel 
axis is a straight line, in order to ensure a smooth 
displacement. 

      

  
Fig. 5 – Non-circular wheel rolling, without sliding, 

over a surface with non-rectilinear profile 
The point C of contact of the wheel with the road is 
the instantaneous center of rotation of the wheel. 
Instantaneously, the velocity of any point of the 
wheel is perpendicular to the line segment connecting 
it to C. Therefore, the velocity of O is perpendicular 
to OC. Thus, OC is, at each instant, perpendicular to 
the trajectory of O. 

Let y = f (x) be the equation of the profile of the road. 
If the motion of the vehicle is smooth, without jerks, 
then the motion of the point O, in turn of which the 
wheel rotates, relative to the vehicle, is a straight line. 
Assume the trajectory of O coincides with the x axis 
and is perpendicular to the y axis. The origin is 
arbitrary.  
Beyond Cartesian coordinates we will use polar 
coordinates. In this system, the position of a point P 
is determined by the distance r of P to a fixed point O 
called pole and by the angle θ between the radius 
vector OP and the polar axis. 
Let g(θ) be the equation of the wheel in polar 
coordinates. The pole is the point O. In each instant, 
the two curves are tangent at the point of contact. It 
may be shown that the differential equation  

θd
dr

rdx
dy 1=  

contains the solution of the problem. 
In the sequel, we will solve the problem of the exotic 
wheels in some concrete situations. We start with 
rectangular wheels turning around the center of the 
rectangle. We show that, in this case, the profile of 
the road is a sequence of catenary arcs. 
 
 
5.1 Rectangular wheels and catenaries 
What is the shape taken by a flexible and inextensible 
rope hanging from two fixed points? This problem, 
posed by Jacques Bernoulli around 1690 in Acta 
Eruditorum, was solved by the author, by his brother 
Johan, by Huygens and by Leibnitz. The answer is 
the catenary. The curve has a parallel to the y axis as 
symmetry axis and, at the point with 0 abscissa, is 
tangent to a parallel to the x axis. 
The catenary is the plane curve whose Carthesian 
equation is  
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Let us consider the case of rectangular wheels, that is, 
the union of 4 line segments such that any two of 
them are either parallel or perpendicular. The 
catenary  arises  as   the  solution  of   the  differential  

  

  
Fig. 6 – Rectangular wheel moving on a sequence of 

catenary arcs 
 



equation giving the profile of the track. A series of 
repeated catenary arcs is the track of a regular 
polygonal wheel. If the wheel is a convex irregular 
polygon, the track is composed by differently shaped 
catenary arcs, one for each side. 
 
5.2 Spiral wheels, saw-edged track 
Let us consider a saw-edged track, or composed of 
line segments. Let us take the line segment whose 
Cartesian equation is  

y = x,   a ≤  x  ≤ y. 
Then dy/dx = 1.  In polar coordinates, the equation of 
the wheel adequate to this track is 

 .1
d
d1 =
θ
r

r
 

The general solution to this equation is  
r = C eθ,  

where C is a constant. The constant may be 
determined, for instance, by the value taken by y 
when x takes the value a. This curve is called 
logarithmic spiral. The first references to this curve 
are found in two letters of Descartes to the Father 
Mersenne in 1638. 
 
5.3 Ellipsoidal wheels, sinusoidal tracks 
Let us consider the case of ellipsoidal wheels, turning 
round one of the foci. The polar equation of the 
ellipse, referred to the focus, is 

θε cos1 +
= pr  

where p denotes the parameter and  0 < ε < 1 is the 
eccentricity. The solution to the differential equation 
for the profile of the track leads to a function 
involving the sinus. It is a sinusoidal track whose 
amplitude and period are determined by the 
eccentricity and parameter of the ellipse. 
 
 
6   The simulation of wheels of different 

“geometry” 
The development of the mathematical models was the 
first step. One may easily see that a wheel with a non-
circular shape can move smoothly on a track. For 
young students and people with low scientific 
background, the visual simulation is an excellent way 
to understand phenomena and models. Also, for an 
interactive virtual museum, the only effective way to 
present this topic is by developing an interactive 
simulation. 
From a pedagogic point of view, we consider another 
issue: the mathematical models are introduced in such 
a way that the user feels attracted by an appealing 
simulation of the phenomena. 

After the visual understanding of the problem, the 
environment should provide information about the 
mathematical background. 
 
6.1 2D simulations 
From the mathematical point of view, 2D simulations 
are enough to prove the models. In fact, in the 
development of the mathematical background, we 
have used 2D simulations. 
 

                   
Fig. 7 – 2D simulations of two wheel-tracks 

The 2D simulations are enough to demonstrate the 
smooth movement of different wheels on different 
tracks and to explain the mathematical models. Our 
experience shows that experienced users, and users 
already aware of the problem, could easily use the 2D 
simulations. The problem is how to capture the 
attention of eventual users and young students. The 
2D simulations do not stimulate people to think about 
the problem and to understand why the smooth 
movement is possible. Although the nature of the 
problem and the heart of its solution are two 
dimensional,  3D simulations have the important 
merit of catching the attention and arising the interest 
of young users. They are also an important means for 
popularising science. Therefore, 3D is the natural 
improvement. 
 
6.1 From 2D to 3D simulations 
Switching from 2D to 3D implies the modelling of 
3D wheels and 3D tracks. To allow an easy and fast 
visualization, we used polygonal surface models: set 
of planar polygons in the three dimensional Euclidean 
space R3. Without loss of generality, we can assume 
that the model consists entirely of triangular faces. 
Formally, we can define a polygonal surface model as 
follows: a polygonal surface model M = (V, F) is a 
pair containing a list of vertices V and a list of 
triangular faces F. The vertex list V = (v1, v2, …, vr) is 
an ordered sequence; each vertex may be identified 
by a unique integer i. The face list F = (f1, f2, …, fn) is 
also ordered, assigning a unique integer to each face. 
Every vertex vi = [xi yi zi]T is a column vector in the 
Euclidean space R3 or, extending the previous 
definition, each vertex vi could be embedded in the 
projective space P3, so that each vertex vi =[xi yi zi 1]T 
is a column vector in P3.  Each triangle fi = (j, k, l) is 
an ordered list of three indices identifying the corners 
(vj, vk, vl) of  fi. 
Sweeping is used to generate the wheels. A vertex    
vi = [xi yi zi 1]T swept along the path represented by 



the sweep transformation T is given by Q = T vi. The 
transformation T determines the shape of the curve. 
The simplest sweep surface is obtained by traversing 
a line segment along a path. If the sweep 
transformation contains only translations and/or local 
or overall scalings, the resulting surface is planar. If 
the sweep transformation contains rotations, the 
resulting surface is non-planar.  
The curves describing the wheels were generated on 
the xy plane and were swept parallel to the OZ-axis. 
In sweeping a planar polygon or closed curve along 
an arbitrary path, some difficulties may arise that can 
stress the viewing system. For instance, which point 
in the polygon or closed curve lies continuously on 
the path? In general, any point in a polygon or on a 
closed curve can lie continuously on the path. 
Another difficulty is: what is the direction of the 
normal to the polygon or closed curve as the path is 
swept out? One can take two approaches here: the 
normal to the polygon or closed curve is in the 
direction of the instantaneous tangent to the path or, 
alternatively, the normal direction is specified 
independent of the path. The former alternative was 
taken, being much more flexible. 
To provide viewing information, the models have 
surface properties beyond simple geometry as, for 
example, surface normals, colors and texture 
coordinates. 
On developing the 3D simulation it turned out to be 
important to build a car to show not only the smooth 
movement of an isolated wheel but also the same 
effect applied to a set of 4 wheels moving together. 
One more condition has been considered in our 
model: the distance between the two axes of the car. 
This distance is a function of the wheel and the track. 
For the first approach to the 3D simulation, we 
assume that the most important was to control the 
smooth movement depending from the main variables 
of the model: geometry of the wheel and the track 
and the distance between the axes. The model of the 
car was not important to simulate the smooth 
movement. 
 

                
Fig. 8 – 3D simulations of two wheels-tracks 

The experience with this simulation environment 
shows that it tends to stimulate users more strongly to 
these problems than a 2D simulation. The use of a 
very basic illumination model was enough for the 
scientific objective, but not enough to attract users 

with some experience on using interactive graphics 
environments. Specially for those with experience on 
using computer games, this is not the final solution. 
 
 
7   A 3D virtual environment 
Modern games are a very important application of the 
most actual computer graphics developments (HW 
and SW). The game metaphor has been used in the 
last years to show scientific concepts and to develop 
systems to be used by young students and users 
without specific computer experience. Therefore, this 
metaphor seems to be the key to develop an advanced 
application adequate to be used in different contexts: 
from the school to interactive museums. 
To develop the virtual environment for our wheels we 
have to take care to different aspects: modeling a 
complete 3D environment, using an adequate 
rendering pipeline to obtain illumination effects and 
realism and designing an attractive environment, 
including the cars. 
For rendering the pipeline we have adopted the 
OpenGLTM architecture, with its three main stages: 
geometry processing, rasterization and per-fragment 
operations. Geometry processing operations are 
responsible for geometrical transformations and 
lighting, during rasterization polygons are scan-
converted and textured, and finally the per-fragment 
operations perform depth, stencil and alpha tests, as 
well as blending operations. 
In our environment, several types of lights can be 
defined with their positions and directions stored in 
viewing coordinates. After lighting, a projective 
transformation and a perspective division are applied 
in order to transform the viewing frustum into the 
unit cube, followed by a viewport transformation. 
The texture coordinates are used to look up texture 
values in 1D, 2D, 3D, or 4D texture. While 
interpolation of texture coordinates is perspective 
correct, colors are only interpolated linearly along 
scan lines. The color resulting from the texture 
lookup is then combined with the fragment color 
according to one of several blending modes. 
After texturing, the fragments have to pass several 
tests before being written to the frame-buffer. These 
tests include an alpha test, which allows a fragment 
to be accepted or rejected based on a comparison of 
its alpha channel and a reference value, a stencil test, 
which is based on a comparison between a reference 
value and the value of the stencil buffer at the pixel 
location corresponding to the fragment, and finally a 
depth test between the fragment z value and depth 
buffer. Colors of fragments passing all these tests are 
then combined with the current contents of the frame-
buffer and stored there as new pixel values. 



 

              
Fig. 9 – Virtual environment with two wheels-tracks 

 
As may be seen in Fig. 9, a special design has been 
developed for this virtual environment, including 
cars, textures and menus to choose the wheels and the 
tracks. Since there is a well-defined relationship 
between the wheel and the track, if the user chooses a 
wheel, the environment shows the corresponding 
track and if the user chooses the track, the 
environment shows the possible wheels for this track. 
The virtual environment is a 3D space with different 
sub-spaces organized according to the tracks and 
wheel types. The user can freely move in the virtual 
space, freely choose de viewpoint and zoom-in and 
zoom-out specific aspects. The cars move with spatial 
restrictions to maintain always the car on the track. 
To be able to have advanced on-line rendering, we 
use GeForce based graphics processors. 
Since this virtual environment aims at combining 
effective attraction from the attractiveness on 
potential users with pedagogic aspects, the 
environment provides additional information about 
the problem, in two levels: the first level is easy to 
understand and descriptive (using informal 
descriptions) and the second level with the 
mathematical background (using precise 
mathematical formulations). When accessing the 
additional information, the user maintains the context 
of the virtual environment improving the perception 
of the problem. 
 

  
Fig. 10 – Virtual environment with complementary 

information 
This virtual environment has been tested with success 
with different types of users with success. The first 
reaction of the users is the interest in exploring the 

environment. After that, usually the users take a look 
into the additional information. 
This environment has been presented at the program 
“2001” of the Portuguese TV and presently may be 
found at the Pavilhão do Conhecimento, in Lisbon, at 
the Exhibition Matemática Viva promoted by the  
“Associação ATRACTOR”. In the same module of 
the exhibition, the user may also test physical models 
of different wheels. 
 
 
8   Conclusion 
The use of virtual environments in experimental 
sciences is one of our research themes. We believe 
that the actual developments in Computer Graphics 
allow the development of more attractive simulators 
and increase drastically the opportunities for new 
developments. 
In the future, we would like to test other simulation 
environments, for example, other 3D tracks with 
different spatial geometries. 
It is now time to use the more advanced technology 
in spreading science, from the basic sciences to the 
applied sciences. The costs are now compatible with 
the real use of this technology and the expectance 
from the users, specially the young students, are not 
compatible with hesitations from the scientific 
community. The key open issue is the analysis of the 
pedagogic effectiveness of the use of advanced 
applications. Informal conclusions are very positive, 
but we believe that psychologists and pedagogists 
have here an interesting area to explore.  . 
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