Wavelet-Based Solution to Time-Dependent Two-Point Boundary Value Problems with Non-Periodic Boundary Conditions Involving Advection*
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Abstract. The Wavelet solution for boundary-value problems is relatively new and has been mainly restricted to the solutions in data compression, image processing and recently to the solution of differential equations with periodic boundary conditions. This paper is concerned with the wavelet-based Galerkin solution to two-point boundary-value problems involving advection with non-periodic boundary conditions. The wavelet method can offer several advantages in solving the boundary-value problems than the traditional methods such as Fourier series, Finite Differences and Finite Elements by reducing the computational time near singularities because of its multi-resolution character. In order to demonstrate the wavelet technique to non-periodic boundary value problems, we have now extended our prior research of solution of hyperbolic, elliptic and parabolic problems with non-linear boundary conditions to diffusion problems involving advection: a simple diffusion-advection and a nonlinear advection (Burgers’ Equation). The results of the wavelet solutions are examined and they are found to compare favorably to the exact solutions. This paper on the whole indicates that the wavelet technique is a strong contender for solving two point boundary value problems with non-periodic conditions involving advection.
1.0.
Introduction.

The term “wavelet” denotes a function, defined on domain R, which, when subjected to fundamental operations of shifts (i.e., translation by integers) and dyadic (two fold) dilation (act of expanding), yields an orthogonal basis of L2R.  That is, the functions
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form a complete orthogonal system for L2R with the usual inner product and also has compact support, where
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 is the fundamental scale function with m and k as resolution and translation parameters. The wavelet expansion for a function  f  takes the form
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The coefficients are defined as 


[image: image4.wmf](

)

(

)

dx

x

x

f

C

k

m

k

m

,

,

f

ò

=


Now, from the definition of wavelets we need to know what a scale function 
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 is. Since it si not explicitly defined, it is implicitly given as the solution of the (recursive) dilation or scale equation:
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The ‘N’ here represents the number of filter coefficients and is named after the inventor, Ingrid Daubechies. Throughout we will use the Daubechies scale functions D6 (N=6). The filter coefficients are the ones, which define the scaling function. For more about Daubechies wavelets and their properties consult Drake [7].

With the brief introduction to basics of the wavelets, we now briefly describe their application areas.  In the areas of time series analysis, matrix compression, and approximation theory, wavelets have carved out a practical niche. In the solution of differential equations, however, wavelets have not, thus far, been able to replace other more traditional techniques such as Fourier analysis and Finite differences. When we talk about PDEs, wavelet basis functions have many properties that make them desirable as a basis for a Galerkin approach: they are ortho-normal, with compact support, and their connection coefficients (that is, integrals of products of basis functions, with or without derivatives) can be computed [1][2]. Even though some work has been done on applying Wavelet-Galerkin method for the solution of time-independent differential equations with periodic conditions, little if any, work has been done to solve the differential equations with non-periodic boundary conditions. We had applied this technique successfully to parabolic equations [9] and some problems with non-linear non-periodic boundary conditions [13]. We now extend that work to two problems involving advection, a simple diffusion-advection equation and a nonlinear advection equation (Burgers’ Equation), for investigation. In the first case we solve the diffusion-advection problem and in the second case we investigate the solution to a two-point boundary value problem involving non-linear advection (Burgers’ Equation). This research serves a basis for future solution of non-linear and singular problems where obtaining the exact solution is not possible.

2.0. Problem 1: Diffusion with Advection.
In this chapter, the case of diffusion through a finite medium of thickness l with diffusion coefficient D is considered, whose surfaces, x = 0, x = l, are maintained at constant concentrations C1, C2, respectively and at the same time there is also advection taking place with a constant velocity u0. Here, the diffusion is one-dimensional in the sense that a concentration gradient exists only along the direction of x, the diffusion of the material takes place depending on the boundary conditions. Initially, the whole medium is kept at zero concentration. The purpose is to find the concentration of the material in the medium at any time and point in the medium. 
Mathematically, the problem can be stated as:
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(2.0.1)
where, D is the diffusion coefficient.
The boundary conditions are as follows:

C (0, t) = C1
for 
t > 0




           (2.0.2a)

C (l, t) = C2
for 
t > 0




           (2.0.2b)
The initial condition is shown below:
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2.1.
Solution.
Although the exact solution of this simple problem exists in the literature [12], the purpose is to find the approximate solution with wavelets in order to establish the wavelet theory for the solution of the boundary value problems of a non-periodic nature. This helps us in solving non-linear and singular problems in the future.
Wavelet Based Galerkin’s Solution

We attempt to apply the Galerkin’s approach to the wavelet solution of the problem, which involves assuming an approximate solution in terms of orthogonal basis and then making the differential and boundary residuals zero. Here we shall transform the problem in wavelet space as follows:

Changing of Variables:
To transform back and forth from the physical space to the wavelet space we make the following substitution:

Let      y=2mx

when 
x = 0, y = 0; x = 1, y = 2m = N-1
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where N is the Daubechies number[1].


  

 
Substituting in the main equation, 2.0.1,
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Thus, the differential equations transforms to:
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(2.1.1)
where 
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Wavelet Galerkin Method
Let
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(2.1.2)
be the approximate solution where Wk(t) are weights and 
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 are scaling functions of the wavelet theory. Since it is an approximate solution, it will not satisfy the equations exactly but instead leave some residuals, which are made equal to zero at a later stage.

On differentiating, 
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k = [-(N - 1), (N - 1)]
Substituting in the equation 2.1.1 yields the differential residual equation as:


[image: image18.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

0

'

'

'

'

¹

+

-

=

å

å

å

y

t

W

B

y

t

W

y

t

W

A

y

R

k

k

k

k

k

k

k

k

k

f

f

f



(2.1.3)
k = [-(N - 1), (N - 1)]

and the resulting boundary residual equations are
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           (2.1.4a)


[image: image20.wmf](

)

(

)

(

)

2

1

1

C

N

t

W

y

R

k

k

k

¹

-

=

å

f

,
k = [-(N - 1), (N - 1)]
           (2.1.4b)

and the initial residual equation is
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(2.1.5)
In order to make R(y) tend to zero, the Galerkin procedure makes R orthogonal to each basis function
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. So, we orthogonalize residuals with basis functions, i.e., we multiply (2.1.3) with
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(2.1.6)



where j, k = [-(N - 1), (N - 1)]
and Connection coefficients [2],
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Now, in a similar fashion, Galerkin approximation attempts to find boundary equations by orthogonalizing the respective boundary residuals with respect to basis functions. Thus the resulting boundary equations are:
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and the initial weights are calculated as follows:
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By a combination of shifted building blocks φ and wavelets ψ, Daubechies wavelets can approximate a function f, which may represent any signal. Daubechies wavelets provide a smoother overall approximation of a function ƒ known only by a sample
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Here, our sample will be
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Using the formula,
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 .  .  .  .  .  .  .  .  (2.1.8)

we obtain ak’s which can be verified with the values at
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So, these values will form our initial values of current problem. The values are 

[a-5;…;a5]=[ 0  0.0025  0.0600 -0.1322  0.4822  0.9124  0.9966  0.7561  0.0000] 

So, here, we have got a set of nine differential equations (2.1.6) and two boundary equations (2.1.7) forming a differential-algebraic system. Substituting the two algebraic equations in place of top and bottom differential equations, we get a 9x9 differential algebraic system, which can be represented as,
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(2.1.9)

where 
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 is 
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 matrix, 


    c is the constant matrix involving the right hand terms in boundary conditions,

           yk is the solution vector at kth iteration,

Once the above equation (2.1.9) is solved, we get a set of Wk’s, which when substituted in equation (2.1.2), gives us the approximate solution.
The system comprises a set of eleven first order differential equations with two algebraic equations along with 11 initial conditions, which is an over-determined system. But when the connection coefficients [2] are calculated, the top and the bottom differential equations do not have compact support and hence are eliminated. Now the system reduces to nine differential equations and two algebraic equations with nine initial conditions. From this set, the nine unknowns have to be determined. To solve the over-determined DAE system, a technique known as backward difference is applied which is assumed to be more stable.
2.2
Backward Difference Formulation.
To solve the above mentioned DAE system, the backward difference technique is applied as follows:
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(2.2.1)

Once solved, a set of Wk’s is obtained, which when substituted in equation 2.1.2, gives the approximate solution for different times.
Exact Solution:
The exact solution of the above problem when C1=C2=0 is given as [12];
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 (2.2.2)
Results and Discussion:
The exact solution (2.2.2) and the approximate solution for the equation (2.1.2) with C1=C2=0 have been computed and plotted using MATLAB, a technical computing software package. The plots that are plotted are shown in the following figures. Figure 1 shows the comparison between exact solution and the plot for the approximate solution for the diffusion-advection equation at different values of D and u0. Now, the approximate solution for the equation (2.1.2) with boundaries C1=0, C2=1 and initial condition set to high (1), is also plotted and is shown in Figure 2. The results match thus proving the credibility of our approach to the solution of this kind of problems.
3.0 Problems 2: Diffusion with non-linear advection (Burgers’ Equation).
In the second case, we will look at a time-dependent non-linear advection equation called Burgers’ Equation [8]:
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Here C is the Concentration, u0 is the advective constant, D is a given constant called Diffusivity and f(C) is some function of C. The particular problem we will consider is where f(C) is linear function

f(C) = a + bC
where a and b are known constants. The boundaries are kept at constant concentrations, C1 and C2 with initial concentration as zero. Mathematically the problem can be described as:
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for 0 ≤ x ≤ l and t > 0  
Boundary Conditions:



C (0, t)  = C1

for
t > 0

.  .  .  .  .  .  .  .  .  .  .   (3.0.2a)


C (l, t)  = C2

for
t > 0

 .  .  .  .  .  .  .  .  .  .  .  (3.0.2b)

Initial Condition:
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The given problem can be reduced to


[image: image50.wmf]2

2

0

0

x

C

D

x

C

bC

u

x

C

a

u

t

C

¶

¶

=

¶

¶

+

¶

¶

+

÷

ø

ö

ç

è

æ

¶

¶


.  .  .  .  .  .  .  .  .  .  .  .  (3.0.4)
3.1. Solution.

As before, we apply the same technique of solving the above-mentioned problem as discussed for solving problem 1. As we apply Wavelet based Galerkin’s approach as described in problem 1, to this problem we obtain our differential residual equation as,
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. (3.1.1)

where 
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Similarly, the boundary residuals are given by
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and the initial weights are calculated as described in solving problem 1.

So, here, we have got a set of nine differential equations, and two algebraic equations (boundary conditions), which together, make a Differential-algebraic system of equations. Here, we replace the top and bottom differential equations with boundary conditions for both the sets and combine them, thus forming a square differential algebraic system, which can be written as:
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where  
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d is the constant matrix involving the right hand terms in boundary conditions,
y = is the vector of unknowns, i.e. Wk
3.2. Backward Differencing Technique.

To solve the above-mentioned differential algebraic system (3.1.3), we apply backward difference technique
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Exact Solution: 
The exact solution of the problem with b=0, u0=1 and boundaries C1=C2=0 is given as [11]:
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3.3. Results and Discussion.

The exact solution (3.3.2) and the approximate solution for the equation (3.0.4) have been computed and plotted using MATLAB, a technical computing software package. The plots that are plotted are shown in the following figures. Figure 3 shows the comparison between exact solution and the 2-D, 3-D plots for the approximate solution for the burgers’ equation, respectively. The plots for the approximate solution for the equation (3.0.4) with boundaries C1 = 0, C2 = 1 and the initial conditions set to high (1) are shown in Figure 4.  The results match thus proving the credibility of our approach to the solution of this problem.
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