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Abstract: - This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel 
approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters 
of the fuzzy inference system, such as its own parameters of the membership function, and the weight of the 
inference rules. This methodology is interesting, not only for the results presented and obtained through computer 
simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this 
methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The 
validation of the presented methodology is accomplished through estimation of time series. More specifically, the 
Mackey-Glass chaotic time series is used for the validation of the proposed methodology. 
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1   Introduction 
The fuzzy inference systems design comes along with 
several decisions taken by the designers since it is 
necessary to determine, in a coherent way, the number 
of membership functions for the outputs and inputs, 
and also the specification of the fuzzy rules sets of the 
system, besides defining the strategies of rules 
aggregation and defuzzification of output sets. The 
need to develop systematic procedures to help the 
designers has been wide, since very often the trial and 
error technique is the only one available [1]. 
     At present time, there are several researchers 
engaged in studies related to the design techniques 
involving fuzzy inference systems. A brief resume 
about the different approaches for tuning of fuzzy 
inference systems may be found in [2]. 
     This paper presents a methodology of tuning fuzzy 
inference systems based on unconstrained 
optimization techniques. This methodology has the 
objective of minimizing an energy function associated 
to the fuzzy inference system. 
     The definition of the energy function must obey the 
performance requirements of the fuzzy system. This 
way, the energy function may be explicited as the 
mean squared error between the output of the fuzzy 
system and the desired results, which are provided by 
the tuning set, similar to the artificial neural networks 
with supervised training. The energy function may be 
also defined through the performance parameters 
desired to the fuzzy system behavior, as it happens in 

the adjustment of the process controllers acting in a 
determined plant. 
     It may be observed that the correct definition of 
energy function is fundamental to the success of the 
desired adjustment [3]. 
     Generally, in applications involving the 
identification and fuzzy modeling, it is convenient to 
use energy functions that express the error between 
the desired results and the results provided by the 
fuzzy system. An example is the use of the mean 
squared error and normalized mean squared error as 
energy functions. In the context of systems 
identification, besides the mean squared error, data 
regularization indicators may be added to the energy 
function in order to improve the system response in 
presence of noises (from training data) or when the 
tuning set has a constrained data quantity. 
     In the absence of a tuning set, as it happens in 
parameters adjustment of a process controller, the 
energy function can be defined through a function 
that considers the desired requirements of a design 
[4]. The example of tuning a fuzzy controller, such 
requirements may be, for instance, maximum 
overshoot signal, setting time, rise time, or less usual 
ones, like the undamped natural frequency of the 
system among others. 
     Therefore, the definition of the energy function in 
the context of tuning fuzzy inference systems 
becomes part of their specifications, as it occurs with 
the inputs number, the membership functions, and the 



choice of the used techniques in fuzzification 
processes, rules inference and defuzzification. 
     Besides adding a new task to the process of fuzzy 
inference system creation, the definition of the energy 
function associated to the system, jointly with the 
techniques underlined in this paper, saves the 
designers efforts in steps of tuning the membership 
functions, including the creation of the fuzzy 
inference rules. 
     Using this new approach from the definition point 
of view, the fuzzy system becomes defined as a three 
layers model. Each one of these layers represents the 
tasks performed by the fuzzy inference system, such 
as fuzzification tasks, fuzzy rules inference and 
defuzzification. 
     The fuzzy inference system adjustment proposed in 
this paper is performed through the adaptation of the 
free parameters from each one of these layers, with 
the objective of minimizing the energy function 
previously defined. 
     In principle, the adjustment can be made layer by 
layer separately, nevertheless not preventing it to be 
made in all layers at each iteration. The operational 
differentiation of each layer, where the parameters 
adjustment of a layer doesn’t influences the 
performance of the others, allows the individual 
adjustment of the layers. Thus, the routine of fuzzy 
inference system tuning acquires a larger flexibility 
when compared to the training process used in 
artificial neural networks. 
     To validate the proposed methodology, it is 
developed a fuzzy inference system to predict the 
Mackey-Glass time series. Due to its chaotic nature, 
this estimation problem offers an adequate application 
to validation of the hereby-underlined approach [5]. 
     This article is organized as follows. In Section 2, a 
review about fuzzy inference systems is presented to 
elaborate all needed considerations to the tuning 
methodology coming on Section 3. In Section 4 is 
made a brief resume about the Glass-Glass chaotic 
time series. In Section 5, the simulation results are 
presented. Finally, conclusions are described in 
Section 6. 
 
 

2   Fuzzy Inference Systems 
The fuzzy inference systems may be treated as 
systems that use the concepts and operations defined 
by the fuzzy set theory, since they use the fuzzy 
inference process to perform their operational 
functions. Basically, these operational functions 
include the inputs fuzzification of the system, the 
inference rules associated to it, the aggregation of 

rules and the later defuzzification of the aggregation 
results, which represent the outputs of the fuzzy 
system [6]. 
     This way, it may be observed that the fuzzy 
inference systems have different functions clearly 
defined, allowing those systems the functions 
interpretation through the representation of a 
multilayer model. 
     Considering the operational functions performed 
by the fuzzy inference systems, it is convenient to 
represent them by a three layers model. Thus, a fuzzy 
inference system may be given by the sequential 
composition of the input layer, by the inference layer 
of the fuzzy rules and by the output layer. 
     The input layer has functionalities of connecting 
the input variables (coming in from outside) with the 
fuzzy inference system and also their fuzzifications 
through respective membership functions. 
     In the inference layer of the fuzzy rules or just 
inference layer, the input fuzzified variables are 
combined among them, according to defined rules, 
using as support the operations defined in the theory 
of fuzzy sets. The set resulting of the aggregation 
process is then defuzzified, resulting in the fuzzy 
inference system output. The aggregation process and 
the defuzzification process of the fuzzy set output are 
made by the output layer. It is important to observe, 
concerning to the output layer, that although it 
performs the two processes above described, it is also 
responsible for storing the membership functions of 
the output variables. 
     In the following sub-sections further details will 
be presented about how fuzzy inference systems can 
be represented through a three layers model. 
 
 

2.1   Input Layer 
As previously presented, the fuzzy inference system 
input has the purpose of connecting the inputs coming 
from the environment with the fuzzy system, as well 
as the fuzzification of those according to the 
membership functions associated to the fuzzy system. 

     The system inputs fuzzification has the purpose of 
determining the degree of each input related to the 
fuzzy sets associated to each input variable. To each 
input variable of the fuzzy system can be associated 
as many fuzzy sets as necessary. This way, given a 
fuzzy system with one only input and, to this input, 
associated with N functions, that is N fuzzy sets 
which define that input, the output of the input layer 
will be a column vector with N elements representing 
the degrees of the input membership in relation to 
those fuzzy sets. 



     If we define the input of this fuzzy system with one 
only input, by the scaling of x, then the input layer 
output of the fuzzy system will be the vector y1, that 
is: 

( ) ( ) ( ) ( )[ ]T
N xpxpxpx 21=y1  

where ( ).kp  is the defined membership function for 

the x  input, referring to the k -th fuzzy set associated 
to this input. 
     The generalization of the input layer concept for a 
fuzzy system owning m  input variables is achieved if 
each input of this fuzzy system is modeled as a sub-
layer of the input layer. 
     Thus, in equation (2) x  is the i -th input of the 
fuzzy system, ( ).pk  is the k -th vector of the 

membership functions associated to the kx  input and 

to the ky vector. Each sub-layer has its own fuzzy sets 
defined by the fuzzy inference functions vector pk(.) . 
     The output vector of the input layer Y(x) may be 
given as presented in (2), that is: 
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     There are several membership functions that can be 
defined. One of the necessary requisites for those 
functions is that they must be normalized in closed 
domain [0,1]. However, it is convenient that the 
membership functions are defined in a simple and 
convenient way, aiming their computational 
implementation, with objective of a higher processing 
speed and rational use the memory. 
     Besides providing benefits from the computational 
point of view, it is convenient that the membership 
functions may have a reduced number of free 
parameters in order that the tuning algorithm performs 
the tuning task in an adequate way. 
 
 

2.2   Inference Layer 
The inference layer of a fuzzy system has the 
functionality of processing the fuzzy inference rules 
defined for it. Another functionality of the inference 
layer is to provide a knowledge base for the process. 
The inference rules are processed in parallel, the same 
way as the sub-layers of the input layers are. 
     Inside this context, this set of rules has 
fundamental importance to the correct functioning of 
the fuzzy inference system. There are several methods 
for the extraction of fuzzy rules from the tuning set.  

     In this article, initially, the fuzzy inference system 
has all the possible inferred rules. Therefore, the 
tuning algorithm has the task of weighting the 
inference rules. 
    Weighting the inference rules is an adequate way 
to represent the most important rules in the fuzzy 
system, or even to allow that conflicting rules are 
related to each other without any verbal completeness 
loss. 
     Thus, it is possible to express the i -th fuzzy rule 
as in (3), that is: 

( )( ) ( )( )xYxY iii rwR =  

where ( ).iR  is the function representing the fuzzy 

weight value of the i -th fuzzy rule, iw  is the weight 

factor of the i -th fuzzy rule and ( ).ir  represents the 
fuzzy value of the i -th fuzzy rule. 
 

2.3   Output layer 
The output layer of the fuzzy inference system aims 
to aggregate the inference rules, as well as the 
defuzzification of the fuzzy set generated by the 
aggregation of inference rules. 
     In the fuzzy inference systems design, the choice 
of not only the aggregation method but also the 
defuzzification method constitutes a very important 
decision. The aggregation method of the fuzzy 
inference rules must be in such a way that the fuzzy 
set resulting from aggregation is capable of 
adequately representing the knowledge explicited by 
this set of fuzzy rules. By analogy, the method chosen 
for the defuzzification must be capable of expressing, 
in a crisp value, the fuzzy set resulting from the fuzzy 
aggregation. 
     Besides the operational aspects, the aggregation 
and defuzzification methods must attend the 
requisites of computational performance in order to 
reduce the computational effort needed in the fuzzy 
system processing. 
     In this paper, the output layer of the inference 
system is also adjusted. The adjustment of this layer 
occurs in a similar way to what occurs with the input 
layer of the fuzzy system. 
 
 

3 Adjustment of the Fuzzy Inference 
System 
The formalization of a fuzzy inference system in the 
form of a multilayer system, as presented in Section 
2, can be justified not only by the different 
operational division of each one of these layers, but 
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also by the presence in each of the different free 
parameters. 
     For example, let a fuzzy system with two inputs, 
each one with three gaussian membership functions, 
with a total of five inference rules, and having an 
output defined with two gaussian membership 
functions. It is known that, for each gaussian 
membership function, two free parameters exist: the 
mean and the standard deviation. This way, the 
number of free parameters of the input layer will be 
12. For each inference rule has been associated a 
weighting factor, so, there are five free parameters in 
the inference layer. In relation the to output layer, the 
same considerations made for the input layer are valid. 
Therefore, four free parameters are in the output layer. 
     This way, the mapping f  between the input space 
x and the output space y may be defined as in (4) 

( )w3w2,w1,x,y f=  

where w1 , w2  and w3  respectively represent the 
vectors of the input membership functions parameters, 
the weight of the inference rules and the output 
membership functions parameters. 
      The definition of the energy function to be 
minimized remains in function of the fuzzy mapping. 
Considering that the tuning set { }dx,  is fixed during 
the whole adjustment process, it may be written: 

( ) ( )( )w3w2,w1,yx,yx, ξξ =  

where ξ  represents the energy function associated to 
the fuzzy inference system f . 

( )*w3w2*,w1*,xy ,f=  

where *w1 , *w2 and *w3  are the free parameters 
values of the fuzzy inference systems after the 
adjustment process. 
 

3.1   Unconstrained Optimization Techniques 
Taken an energy function ( ) ( )w3w2,w1,yx,ξ  in the 

form previously defined for a fuzzy inference system, 
in the assumption that a function might be 
differentiable in relation to a determined interval by 
the w1 , w2  and w3  vectors, that is, differentiable in 
relation to free parameters of the fuzzy inference 
system. Therefore, it is desired to find an optimum 
solution that may fulfill the following conditions: 
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     With the finality of simplifying the notation, these 
three vectors may be represented by one unique 
vector, resulting from the vector concatenation of w1 , 
w2  and w3 , that is: 

[ ]TTTT w3w2w1w =  

     Thus, the expression (7) may be rewritten by: 

( ) ( )ww ξξ ≤*  

     Therefore, it may be observed that, to attend the 
condition expressed in (9), it is necessary to solve an 
unconstrained optimization problem. Then, the 
w vector may be obtained by the following equation: 
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     The condition that expresses the optimum solution 
in (10) must attend to the following solution: 

( ) 0w =∇ *ξ  

where ∇  is the gradient operator, that is: 
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     In problems like this, involving the minimization 
of energy functions, it is desired that to each iteration, 
the energy function value would be less than the 
energy function value of the previous iteration. 
     There are several techniques used in solving the 
unconstrained optimization problems. A detailed 
description of the unconstrained optimization 
techniques may be found in [7]. 
     The choice of the most adequate technique to be 
used is conditioned to the form by which the energy 
function is defined. For example, the Gauss-Newton 
method for the unconstrained optimization may be 
more applicable in problems where the energy 
function is defined as: 
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where ( )ie  is the absolute error in relation to the i -th 
tuning pattern. 
     In this paper, a derivation of the Gauss-Newton 
method is used for the fuzzy inference system tuning. 
The optimization algorithm used was the Levenberg-
Marquardt method [8]. The calculation of differential 
equations was performed with the help of the finite 
differences method. 
 
 
4   Mackey-Glass Chaotic Time Series 
The research around chaotic series created new 
paradigms about the existent modeling techniques. In 
this way, the present research appeals to new 
fundaments for the series prediction. On the other 
hand, the determinism inherent to chaos implies that 
many phenomenons, formerly seen as random, may 
be treated in a predictive way. 
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     The prediction of the Markey-Glass chaotic time 
series is a classic estimation problem. Generally, this 
problem is used to test the generalization capacity of 
such as systems coming from the computational 
intelligence, like neural networks and fuzzy inference 
systems. The dynamic properties of Mackey-Glass 
time series are rich in complexity. The Mackey-Glass 
differential equation may be expressed by: 
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     The Mackey-Glass time series was one of the first 
models for the time quantization of producing white 
cells in the human organism [9]. In general, and in this 
work too, the values of the constants in (14) are 
adopted as being 2.0=a , 1.0=b and 10=c . The 
value for the delay constant τ is chosen as being 17. 
     The Mackey-Glass time series may be obtained by 
the integration of the equation in (14). More 
specifically, it has been used the second order Runge-
Kutta method with integration step equal to 0.1.     
The result of this integration is shown in Figure 1. 
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Fig. 1- Mackey-Glass time series. 

 
 

5   Methodology and Results 
Using the methodology presented in this paper for the 
fuzzy inference systems tuning and, based on the 
Mackey-Glass time series, a fuzzy inference system of 
Mandani type was developed with the objective to 
predict this series. The tuning set was constituted by 
500 patterns. The input variables of the fuzzy 
inference system were four, corresponding to values 
x(t – 18), x(t – 12), x(t – 6) and x(t). As an output 
variable was adopted x(t + 6).  
     The fuzzy inference system was defined having 
four fuzzy sets attributed to each input variable and 
also to the output variable. A total of 64 inference 
rules have been used in the inference process. 
     The energy function of the system was defined as 
being the mean squared error between the desired 
values ( )6+tx  and the values ( )6+tx  
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where L  is the number of data used in the tuning 
process (L=500). 
     After minimization of (14), the membership 
functions of the fuzzy inference system were adjusted 
as illustrated in Figures from 2 to 5. 
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Fig. 2 - Input membership functions to ( )18−tx . 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
0 

0.2 
0.4 
0.6 
0.8 

1 

x(t-12) 

mf1 mf2 mf3 mf4 

 
Fig. 3- Input membership functions to ( )12−tx . 
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Fig. 4 - Input membership functions to ( )6−tx . 
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Fig. 5 - Input membership functions to ( )tx . 
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     In Figure 6 is presented the output membership 
functions of the fuzzy inference system. 
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Fig. 6 - Output membership functions ( )6+tx . 

     In Figure 7 is presented the result of prediction 
provided by the fuzzy inference system for 1000 
points. 
     The mean squared error of estimation for the 
proposed problem was 0.000598 with standard 
deviation of 0.02448. 
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Fig. 7 - Estimation of the fuzzy inference system 

for the Mackey-Glass series. 
 
     For comparison, it was developed a fuzzy 
inference system tuning with ANFIS (Adaptive 
Neural-Fuzzy Inference System) method. This fuzzy 
inference system was made with 10 membership 
functions for each input, being the knowledge base 
constituted by 10 rules. The mean squared error of 
estimation for the proposed problem was 0.000165 
with standard deviation of 0.0041. 
 
 

6   Conclusions 
In this paper was underlined the basic foundations 
around the fuzzy inference systems tuning process, 
from the unconstrained optimization techniques. 
     In order that the tuning may be efficient it is 
necessary that the energy function is perfectly 
underlined for the adjustment process. 

     For the validation of the proposed methodology, it 
was studied the estimation of the Mackey-Glass 
chaotic time series. The comparison of the results was 
made with those results provided from the ANFIS 
methodology. Although the results provided by the 
ANFIS methodology were better, the amount of 
fuzzy sets associated to each input was superior to the 
number of fuzzy sets used in the fuzzy system 
developed along this work. 
     This approach offers new perspectives of research 
related to the fuzzy inference systems, allowing thus 
that problems previously treated only with the help of 
artificial neural networks may now be treated through 
fuzzy inference systems. 
     As future works, it is intended to develop efficient 
techniques for the construction of inference rules 
bases with the objective of optimizing their structures 
in the whole. 
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