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Abstract: - The induction motors are largely used in several industry sectors. The dimensioning of an induction 
motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. 
The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather 
than conventional methods, which use classical identification techniques and mechanical load modeling. 
Simulation results are also presented to validate the proposed approach. 
 
Key Words: - Induction motors, load modeling, parameter estimation, neural networks, system identification. 
 

1   Introduction 
The Three-phase Asynchronous Induction Motors 
(TAIM) are used in many industrial sectors as leading 
element to generate mechanic energy. Their main 
characteristics are based on robustness and low cost. 
However, when the load behavior is unknown, the 
choice procedure for a proper motor to a determined 
application becomes a difficult task, since the usual 
procedure is the experimental trial on the due 
application. If this motor presents current measures 
with a value over the nominal and speed under the 
admissible nominal value, it is clear then that the 
choice of this motor is improper. Next step, in this 
choice procedure, it is to substitute this motor by 
another with power addition in relation to the first 
one. 

From the practical and mathematic analysis, it is 
demonstrated that the three-phase asynchronous 
induction motor, which are working in over 
dimensioned way, presents an increase of power 
factor and a decrease of efficiency. On the other 
hand, three-phase asynchronous induction motors 
working in an under dimensioned way present 
overheat and drastic reduction in its useful life. 

A research made in CEMIG (Electric Energy 
Company of the Minas Gerais State - Brazil), with 
3425 three-phase asynchronous induction motors, in 
several industrial sectors, has shown that 28.7% of 
them were over dimensioned and 5.9% of them 
worked under dimensioned. 

Loads connected to the TAIMs shaft are pre-
sorted according to the torque characteristic in four 
categories: constant, linear, quadratic and inverse [1]. 
This paper will consider only these four kinds of 

loading, which are mostly found in industrial 
applications. 

The conventional methods used to determine 
torque are based on direct and indirect methods, as it 
was shown in [2]. According to the reference, the use 
of winding torquimeters brings the need of physical 
longitudinal displacing between the motor and the 
machine. The high start torque demanded by some 
loads requires over dimensioning of the sensor element, 
reducing thus its sensibility; the winding torquimeters 
must be carefully aligned to the motor shaft in order 
to avoid flexions that may reduce its useful life, 
making this system installation slow and expensive. 

This paper proposes the use of ANN (Artificial 
Neural Networks) as alternative tool in the process of 
torque indirect measure in industrial loads with the 
objective of better dimensioning the induction motor, 
and also as optimization of control systems, whose 
variables of interest are the torque and the failure 
prediction in mechanic systems. 

The organization of this paper goes on in the 
following order. In Section 2, it will be presented the 
mathematic modeling of the TAIM used in 
simulations. In Section 3, it will be described the 
basis of artificial neural networks. The results of 
simulation will be presented in Section 4 for the 
proposed model validation. In Section 5, it will be 
presented the conclusions of this work. 
 
 

2   Mathematic Modeling of the 
Induction Motor 
The mathematic model used in this work will 
simulate the behavior of the motor from its transient 



state until the steady state [3-6]. This model was 
developed by the use of the Matlab/Simulink 
software as computational tool. The machine 
parameters, such as: voltage, electric parameters of 
rotor and stator, moments of load and rotor inertia, 
and load torque are the input of the model. The 
electric current, the electromagnetic torque and the 
rotor speed are the outputs of the induction motor 
model. These variables will be used in the training 
process of the neural network.  
 
 
2.1   Types and Characteristics of the TAIMs  
The Three-phase Asynchronous Induction Motors are 
three-phase electrical machines widely used in 
industry, becoming them one of the main elements of 
mechanic traction. 

Their main characteristics, such as robustness and 
low cost, make these motors preferred for most of the 
applications. To train an artificial neural network  
(ANN), whose objective is the torque estimation 
demanded by the load in the motor shaft, it is 
necessary the development of a mathematic model of 
this machine that considers the main characteristics of 
its non-linearities. However, due to its complexity, 
effects like temperature, copper and hysteresis losses 
will not be considered. 

The three-phase asynchronous induction motors 
are classified in two basic categories, which as 
defined as follows: i) TAIM with rotor in squirrel-
cage (TAIMSC), and ii) induction motors with coiled 
rotor (IMCR). All results obtained in this work are 
related to TAIMSC but may be expanded to the IMCR.  
 
 
2.2   TAIM Mathematic Model 
The objective of this section is the development of 
general mathematic model applicable to all three-
phase asynchronous induction motors. The model 
must be capable of reproducing the electrical-
mechanical behavior from the transient to the steady 
state since the results will be applied to the neural 
approach training. The detailed equation of the 
induction motor may be found in [3-6] and [14,15]. 
The simulation of the proposed model, using 
Matlab/Simulink, generated necessary data for the 
training process of the artificial neural network. Table 
1 shows the induction motor parameters used in the 
simulation. 
 

Table 1 - Induction motor specification and load 
parameters. 

Standard Line – IV Poles – 60Hz – 220/380V 
Power  (1 HP) 745.69 (W) 
Stator Start Resistance 10.17 (Ω) 

Stator Steady State Resistance 12.40 (Ω) 
Rotor Start Resistance 5.80 (Ω) 
Stator Start Inductance 1.77x10-2 (H) 
Stator Steady State Inductance 2.05x10-2 (H) 
Rotor Start Inductance 1.10x10-2 (H) 
Rotor Steady State Inductance  4.84x10-2 (H) 
Magnetizing Start Inductance 0.606 (H) 
Magnetizing Steady State Inductance 0.546 (H) 
Rotor Inertial Momentum 2.71x10-3 (Kg.m2) 
Load Inertial Momentum 8.13x10-3 (Kg.m2) 

 
 

2.3   Computational Model for Dynamic 
Simulation of Industrial Loads 
The development of a computational mathematic 
model for load simulation has the goal of validating 
the proposed neural structure, which will be used in 
practical and real simulations. The proposed model is 
capable to provide to the TAIM shaft a resistant 
torque, which variation is related to the speed change. 
Figure 1 describes the proposed model. 
 

 

Fig. 1 - Computational model.  
 

The induction motor is supplied through a three-
phase network without the use of frequency 
inversors. The assembling synchronous machine-
rectifier-loads will provide the resistant torque in its 
shaft. The micro controller that receives the signal 
from the optical encoder, which quantifies the speed 
of the motor shaft, determines setting the load in 
motion. The sequence of setting in motion differs for 
the four load types. For the constant load modeling 
all resistances must be linked together. In the other 
modeling the resistances will be set in action 
according to the desired load outline. In this work 
only the quadratic load will be simulated trough this 
mathematical model. The results obtained from this 
model simulation act as input to the neural network, 
and the torque measured in the shaft is compared to 
the output of the artificial neural network. This way, 
it is possible to validate the network computationally. 



3   Using Artificial Neural Networks in 
Induction Motors 
The use of artificial neural networks has shown 
efficient in solving a series of engineering and 
sciences problems. In this work, we have applied 
neural networks to estimate some parameters related 
to the induction machines. 

Some approaches use neural networks for 
parameters estimation of electrical machines in 
feedback control of their speeds [7,8]. Another works 
make use of neural networks for fault prediction in 
induction motors in order to preventing maintenance, 
such as those described in [9,10]. It should also be 
noticed that the induction motor is the main energy 
consumption element in industries.  

The appropriate specification of an induction 
motor requires the knowledge of that load to be 
coupled in its shaft. The lack of this information is 
compensated by the following procedure: current and 
speed are measured and if they have values out the 
range specified for that induction motor, then this 
motor will be substituted by another one, which is 
sometimes with 100% more powerful. It is also 
known that induction motors working over estimated 
increase the losses and they present a low power 
factor. As a consequence of all these facts, a big 
amount of electric energy will be lost.  

Therefore, the main objective involved with this 
paper is in using artificial neural networks to estimate 
the load behavior on the motor shaft. In this work, it 
will be used a multilayer perceptron network, which 
has been trained by the backpropagation algorithm. 
This training algorithm has two basic steps: the first 
one, called propagation, applies values to the inputs 
of the ANN and it verifies the response signal in the 
output layer. This value is then compared with the 
desired signal in the output. The second step happens 
in the inverse way, that is, from the output to the 
input layer. The error produced by the network is 
used in the adjustment process of its internal 
parameters (weights and bias) [11]. 

The basic element of a neural network is the 
artificial neuron (Figure 2), which is also known 
either by node or processing element. 

 

 

Fig. 2 - Representation of the artificial neuron. 

The model of artificial neuron illustrated in Figure 
2 can mathematically be modeled by the following 
equations:  
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where : 
n is the number of input signals of the neuron. 
Xi is the i-th input signal of the neuron. 
wi is the weight associated with the i-th input signal. 
b is the threshold associated with the neuron. 
vj(k) is weighted response (summing junction) of the 

j-th neuron with respect to the instant k.   
ϕj(.) is the activation function of the j-th neuron. 
yj(k) is the output signal of the j-th neuron with 
respect to the instant k. 
 

Each artificial neuron is able to compute from 
input signals the respective output signal. The 
activation functions used to calculate the output 
signal are typically nonlinear. The neural networks 
that process analog data, which are also involved in 
this application, have often used activation functions 
of sigmoid type or hyperbolic tangent.  

The adjustment process of the network weights 
(wj) associated with the j-th output neuron is done 
from computation of the error signal with respect to 
the k-th iteration or k-th input vector (training 
example). This error signal is provided by the 
following equation:   
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where dj(k) is the desired response to the j-th output 
neuron. 

Adding all squared errors produced by the output 
neurons of the network with respect to k-th iteration, 
we have:  
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where p is the number of output neurons. 
For an optimum weight configuration, E(k) is 

minimized with respect to the synaptic weight wji . 
Therefore, the weights associated with the output 
layer of the network are updated using the following 
relationship:  
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where wji is the weight connecting the j-th neuron of 
the output layer to i-th neuron of the previous layer, 



and η is a constant that determines the learning rate 
of the backpropagation algorithm. 

The adjustment of weights belonging to the 
hidden layers of the network is also done in 
analogous way. The necessary steps to adjust these 
weights associated with the hidden neurons can be 
found in [11]. 
 
 
3.1   The LVQ-1 Network 
In this paper the identification of the several load 
behavior was made using a network of the LVQ-1 
type. A supervised algorithm, which from 
informations about the several classes that define the 
analyzed process, moves the quantizer vectors of the 
system with the objective of improving the decision 
regions of the system. 

An input vector x1, which components have 
random values obtained from the input space, is 
compared with vectors wj that represent the j-th 
classes (neurons) associated to the analyzed process. 
If the input vector xi has higher proximity level in 
relation to the wj vector, then the wj vector is attracted 
towards the xi vector; otherwise, vector wj is repelled 
in relation to the direction of the vector xi. Since CWj 

represents the associated class to vector wj and Cxi 
demonstrates the associated class to the input vector 
xi, then the learning algorithm of the LVQ-1 network 
(applied only to the winner neuron) can be 
synthesized in the following form: 

if  Cwj  =  Cxi 

then wj(t+1) = wj(t) + η[xi – wj(t)] 

else wj(t+1) = wj(t) – η[xi – wj(t)] 
 
where η is the learning rate. The convergence of 
vectors wj occurs after the successive application of 
all input vectors xi belonging to the respective input 
set. A detailed study of the LVQ-1 algorithm may be 
found in [11, 12]. 

The LVQ-1 network was trained for three 
situations: i) to identify type of torque and classify it 
between higher than zero or equal to zero; ii) to 
identify type of torque and classify it between 
constant and quadratic; and iii) to identify type of 
torque and classify it between linear and quadratic. 

For all situations, 10 neurons (quantizer vectors) 
are used to represent each one of the classes, which 
represent the system tendencies. For the training, it 
was used 5 complete curves that describe phases of 
different behaviors of the current in the induction 
motor (from the start to the permanent state) in 
relation to the four types of load. After convergence 

of the quantizer vectors, the network is capable to 
identify the possible tendency of load when a new set 
of vectors, which describe the present behavior of the 
current, is presented. On next section will be 
presented simulation examples to validate the 
proposed approach. 
 
3.1.1  Training of the Patterns Classifying Network 
The patterns classifying network has the objective of 
receiving the current data vector and to classify it in 
one of the four types of load: linear, quadratic, 
constant or inverse. 

The input data is the current that supplies the 
motor. Network 1 classifies the current data vector in 
initial torque higher than zero or equal to zero. In a 
second stage the same vector is presented to the 
second network, which depends on the initial 
classification, putting in action network 2 or network 
3. Network 2 classifies the data vector in constant or 
inverse torque, while network 3 classifies it in 
quadratic or linear torque. Figure 3 illustrates the 
architecture described for patterns classification. 

 

Fig. 3 - Patterns classifying network. 
 
3.2  Interaction between LVQ Network and 
Multilayer Perceptron 
The multilayer perceptron network was trained with 
inputs of voltage, current, speed and output of 
electromagnetic torque demanded by the load in the 
motor shaft. The mathematic simulations of the 
induction motor provided the data for the net training. 

Each type of load had a trained perceptron 
network, that is, one network generalizes the loads of 
quadratic type, other for linear type, other for the 
constant, and finally, other for the inverse type.  

To determine which perceptron network type must 
be put in action for generalization, we use a system of 
patterns recognition based on LVQ-1 networks.  
 
 

4   Results of Simulation 
The results of simulation obtained in this work were 
for a TAIM of 1 HP and 0.16 HP, modeled and 



implemented using Matlab/Simulink. The model and 
the procedure hereby applied may be used for other 
powers. In all trainings it was used the method 
proposed by Levenberg-Marquardt, as presented in 
[13]. The input signals of the network were the 
following ones: voltage (V), current (A) and rotor 
speed (rad/s). Each motor simulation has its own 
trained neural structure (LVQ + Perceptron). 

The output signal calculated by the network is the 
torque. On the figures are presented the desired 
torque values and so the results obtained in the 
network output. This way it is possible to visualize 
the desired value and the value obtained in the 
network output in the same chart. In Figure 4, it is 
presented the results estimated by ANN for a load 
with constant load torque on 0.16 HP motors, which 
are largely used in conveyor belts. 

 
Fig. 4 - Estimation of torque to constant load. 

 
In Figure 5, it is presented the result obtained from 
the estimation of the inverse torque in milling cuter 
and mandrellers for the 0.16 HP induction motor.  
 

Fig. 5 - Estimation of torque to inverse load. 
 

In Figure 6, it is presented the result of simulation 
for the load with quadratic behavior in the 1 HP 
TAIM, characteristic of pumps and ventilators. 

In Figure 7, it is presented the result of simulation 
for the load with linear behavior applied in the 0.16 
HP Motor. 

  
Fig. 6 - Estimation of torque to constant load. 

 
Fig. 7 - Estimation of torque to linear load. 

 
In Figure 8, it is presented the results of 

simulation of the computational model for dynamic 
simulation of industrial loads, as presented in Section 
2.3.  The load behavior was imposed to the TAIM 
shaft trough the resistance switching sequence. It 
must be observed that the load was divided in twelve 
discrete steps. This switching procedure introduces 
distortion on current signal, resulting in error among 
the desired result and the ANN output only during the 
transient state. 

 
Fig. 8 - Estimation of torque to dynamic load. 
 



The results of simulation confirm that it is 
possible to estimate torque in the TAIM shaft using 
artificial neural networks, which inputs are measures 
of voltage, current and speed. The perceptron 
network used in this simulation has a hidden layer 
with 25 artificial neurons.  

In performed simulations, the errors found 
between desirable values and those presented in the 
network output do not surpass 5%. The classification 
adroitness of the LVQ-1 network was of 75% for 
loads with inverse and constant torque characteristics 
and agreement of 85% in the classification of linear 
and quadratic loads.  

When the load behavior is known it is not 
necessary the use of pattern classifying architecture. 
In this case are used only perceptron networks to 
determine the torque behavior demanded by the axle 
from the start to the steady state. To improve the 
generalization results on dynamic load simulation it is 
strongly recommended the use of harmonic distortion 
during the ANN training. 
 
 

5   Conclusion 
This paper describes the application of artificial 
neural nets in torque estimation of loads mainly used 
in industrial premises, enabling to supply control 
systems and to help better dimensioning of a TAIM, 
as to put it in action for determined application. The 
results of simulation are considered satisfactory. The 
methodology used in this work may be applied to 
other loads and other types of motors.  

The main justifications for the application are the 
following: i) the torque estimation is directly made by 
an artificial neural network, ii) the method may be 
used as an auxiliary tool in the control and 
dimensioning of a TAIM, iii) the method contributes 
to verify if a motor is overestimated or under 
dimensioned. The method here developed contributes 
in a significant way to the reduction of electric energy 
losses and the increase of the power factor, which are 
derived from bad dimensioning of electrical motors. 
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