Defensive Programming for Safety-Critical Systems

JORGE R. DE ALMEIDA JR., SELMA S. S. MELNIKOFF,
JOÃO B. DE CAMARGO JR., BENÍCIO JOSÉ DE SOUZA

Safety Analysis Group - Department of Computer Engineering and Digital Systems

Polytechnic School of University of São Paulo

Av. Prof. Luciano Gualberto, trav.3, no 158 - CEP: 05508-900, São Paulo - Brazil

jorge.almeida@poli.usp.br, selma.melnikoff@poli.usp.br, joao.camargo@poli.usp.br, benicio.souza@poli.usp.br, http://www.pcs.usp.br/~gas

Abstract: - This paper presents some techniques of defensive programming to be used in software based safety-critical systems. The use of defensive programming in such systems is important and it is totally justified because some problems can cause serious consequences. The use of defensive programming can reduce the risk level of safety-critical systems, contributing to produce high quality software demanded by international standards. Main problems found in software of safety-critical systems are also presented, with the correspondent way of treatment, based in the described techniques.

Key-Words: - defensive programming, safety-critical systems, defensive programming techniques
1 Introduction

New digital technology has been introduced more and more in control and supervisory systems providing largest control capacity and better performance. Systems became more powerful and complex, changing the development, certification and operation concepts.

 Impacts are more sensible in safety critical systems, where a malfunction can cause risk to human life and environmental damages. The use of computers and software in such systems allows high complexity in component interactions and coupling compared to the physical constraints imposed by earlier control and supervisory equipments [1]. So, traditional techniques and procedures of safety analysis for electro-mechanical systems have been reviewed to generate new methodologies for systems that contain software.

 The safety analysis through defensive function in software based safety critical systems is one of approaches adopted by researchers of University of São Paulo. Defensive functions consist of several special specification and coding techniques whose main objective is to avoid system faults. Defensive functions are needed in several levels of software systems from requirements to executable codes.
 In this context, section 2 presents a discussion about acceptable level of risk, system certification and development process of software based safety systems. Section 3 presents programming language features important to safety critical systems. Section 4 presents main defensive programming techniques and the safety analysis procedures adopted by the group. The main problems found in safety-critical systems are presented in Section 5, with the correspondent way of treatment, based in the techniques described in Section 4. Section 6 presents the conclusions and comments related to the researches that have been developed.
2 Safety Critical Systems

Safety critical systems are those in which a failure can cause serious material damages or damages to the environment, or even risk to human life, could it be operators, or population reached by a consequence of this failure. The use of computer based safety critical systems has been growing significantly over the last decades and researches about their safety assessment have been made in the industrial and academic communities. The design complexity has increased and the safety assessment and certification became more difficult. Hardware fault modes are extremely complex and are difficult to be predicted. Software does not present wear, but can contain residual errors, which can cause unsafe states to the system. Actually, there is no general accepted technique that evaluates the safety of a whole system, when it contains software.

 This is a typical situation of risk inherent due to technology. New digital technology and specially software constitute important tool to obtain control and supervisory systems with larger capacity and better functionality and performance. However the final product cannot be certified only by assessing the product, especially in the case of safety critical systems.

 The acceptability of a given level of risk is determined by the benefits associated to that risk and by the amount of effort required to reduce it. Risk with catastrophic consequences, which could occur frequently is not tolerable. By the other hand, risks that cause negligible consequences with frequent occurrence, or risks with catastrophic consequences that is improbable or even remote to occur can be acceptable.

 The IEC 61508 standard classifies the risk into three levels [2]:

· Intolerable risk: when the consequence is intolerable and its occurrence cannot be justified;

· Acceptable risk: when the consequence, though not insignificant may be acceptable under certain conditions;

· Neglected risk: when the consequence is insignificant and it can be neglected.

 In case of safety critical systems, a particular risk is acceptable if it is as low as is reasonably practicable, defining the ALARP level. The risk level satisfying this criterion is named tolerable risk for one given application. Nevertheless, it is important to consider that a risk within the ALARP level is never acceptable if it can be easily reduced. Therefore, a proposed system that has a very small risk may be judged unacceptable if that risk is unjustifiable. Conversely, a system that has a significant risk may satisfy the requirement if it offers sufficient benefits, and further reduction of this risk is considered impracticable.

 Generally, the acceptable risk is obtained starting from a balance among the benefit obtained through new technology and the risk degree that the society is disposed to accept for the benefit. That risk depends on social and cultural factors, and on the value that is attributed to life, property and environment.

 In safety critical applications, national and/or international regulations establish approaches for systems certification and development.

 The safety related activities should start in the earlier phase of system conception and have sequence during all phases of the system lifecycle. The requirements elicitation may be based on system hazard analysis, including software, hardware, operators and operational environment. The information derived from this process is used to define safety design constraints, devise system safety test plans and testing requirements, trace safety-requirements to code and develop safety-related information for operation, maintenance and training manuals.

 Certification is the confirming process that a system, software subsystem or computer program is capable of satisfying its specific requirements in an operational environment [3]. In software based safety critical systems, the certification activities refer to process and product assessment. Therefore, a safety critical system should be developed under a safety assurance process, which includes selected techniques and procedures that permit the demonstration a significant level of safety.

 In this context, the defensive techniques are an excellent method to include safety characteristics to the system being developed. Defensive functions can be inserted through safety requirements, system and software architecture characteristics and program constructions, improving the robustness of the final system.

3 Programming Discipline for Safety-Critical Systems

Robustness of critical systems constitutes a very important feature, because the occurrence of a fault can lead it to hazard states, presenting potential to cause material and human losses or serious risks to the environment.

 Accidents can be avoided through careful analysis of development phases inserting robustness construction and verification in safety critical systems. In this way, we are able to say that such activity can save human lives and material resources [4].

 Several tools, such as analysis and design methodologies, formal specification language, programming languages and programming techniques can be used to add robustness to software systems, depending on its complexity and application.

 However, one of the important activities of a safety-critical application project is coding. The translation of design characteristics to the code must preserve the safety requirements elicited during analysis and design phases. Besides this, programming rules, which assure the avoidance of hazardous constructions that cause risky situations, may be adopted. The defensive programming is a technique that contributes to this propose. For instance, situations with high algorithm complexity or hard program execution time must be carefully analyzed to avoid performance degradation. Program constructions, which can cause hazardous situations, may be avoided manually through code inspection or automatically by a pre-compiler.

 Some programming languages, especially those with strong type checking or application-oriented languages can minimize the risk of dangerous or ambiguous constructions. Some example can be seen in reference [5].

 The standard IEC1508 – Functional Safety: Safety-Related Systems, Part 7 – Overview of techniques and measures specifies some techniques for defensive programming whose purpose is to produce programs which detect anomalous control flow, data flow or data values during their execution and react to them in a predetermined and acceptable manner.

4 Defensive Programming

In the context of safety-critical systems, defensive programming is a technique that can be used against software errors, hardware errors and invalid inputs, leading the system to a safety state, when these conditions occur.

 Events such as erroneous user input (e.g. entering a data in the wrong format), file input and output problems (e.g. end of file or disk full), problems with arithmetic (e.g. overflow), hardware and software interrupts (e.g. hitting the break key) may be predicted during software design. Coding must include these events to prevent software malfunction. Run-time errors and synchronization problems may be considered to prevent system crashes.

 The method of adding defensive programming techniques consists in adding assertions, checks, etc., in the code to catch errors, then exit the program or take corrective action, depending on the severity of the error.

 Defensive programming techniques are based on the assumption that the system hardware and software are not always totally reliable, and therefore, the application program construction should consider debugging facilities inside it. [6]

4.1 Defensive Programming Techniques

[image: image1.wmf]There are many simple general rules to improve the code quality. One of these rules states that the programmer must fully understand the problem to be solved before beginning to write the code. Another important rule is that a code should never be written in a hurry. The time saved during to code will be lost in debugging activities.

 Programming tricks are also not recommended, because tricks are hard to be conceived and to be understood [7]. It is better to split complicated expressions and program logic into a series of simpler calculations. The resulting code will be easier to understand and to debug [8].

 However, these rules are not enough to obtain code quality and additional techniques must be considered to coding activities. Defensive programming techniques may be present in safety systems to enhance robustness characteristics. The next subsections present some important techniques that allow the implementation of good defensive programming. [03], [09], [10], [11]

Test of Valid Values: It is convenient to test all values used in the code to see if they are in the expected range of valid values.

Test of Synchronism: Eventually the execution of some routines must be synchronized with others routines, assuring a correct sequence of events.

Test of Execution Times: Sometimes it is not enough to check if the results are correct, but it must be verified if the generation times are inside of the specified values.

Verification of Capacity: The hardware of computers has limitations established by physical limitations of circuits, such input/output devices. So the maximum capacity of these devices cannot be overcome.

Test of Time-outs: If the generation time of some signals is exceeded, some actions must be taken in order to regularize the flow of information.

Test of Memory Areas: One of the problems to be avoided is the use of restricted areas of memory. Then uses of memory must be preceded by a test of correct addressing, assuring right access of data or code.

Test of Resources Use: Before trying to use a set of resources, it is necessary to check if it is available at certain moment. This type of verification assures that devices not in use will not be held.

Exception Handling: Exceptions are special unexpected error conditions at run time, such as division by zero, overflow, rise of special interrupt sign, etc. These conditions are explicitly raised when errors occur and they are automatically detected by programming language mechanism and treated by exception handlers. Exception handlers are user-defined code fragments that are executed when an exception is raised and the error processing is made outside the function or object where the error has occurred.

Checking Function Arguments: This type of check verifies if the arguments of a function are inside of predetermined correct limits. Arguments checks are expensive, especially in low-level functions that are called repetitively. Check can be done through an assertion or code that executes corrective action and permits continuation of execution.

Returning error codes: Functions can return error codes when erroneous conditions are detected during execution. The detection of such codes can alert the maintenance team to take any necessary action. Therefore, it is important to specify and implement correctly the conditions that will be analyzed and the respective error codes during software design.

Return from Routines: When a routine is called, it must ever has the necessary code to assure that after the return to the activating routine, the processing continues without losses, assuring correct continuity. If there are routines with wrong return procedures, other routines in the software can have its processing affected, making actions in an incorrect way.

Loop Control: The loop termination should be correctly implemented to avoid endless repetition of a piece of code. The non-termination of the loop can cause a non-activation of safety function when necessary, leading the system to dangerous state. It is important also to assure the correctness of loop conditions to avoid that some code section would not be executed when necessary.

Input/Output Tests: The input and output section of the routine codes should include tests to guarantee the correct entrance and exit from the routine. The input and output tests are particularly important to avoid the reentrance caused by an improper deviation starting from the inside of the routine or to the middle of the routine, preventing the accomplishment of unexpected actions.

Use of Variables/Constants: Variables and constants must be used in an appropriate manner. The incorrect use can lead to the execution of unforeseen processing.

Comments in the Source Code: The role of the comments in the source code is to improve the understandability of code meaning, enhancing the task of testing and maintenance of the system. However wrong or ambiguous comments can cause doubts about code understanding. Therefore, comments must not lead to incorrect conclusions, nor contain ambiguities that could cause erroneous interpretation.

Code Legibility: Legibility has a fundamental role in test and maintenance of system, because code that is difficult to be read demands much more effort to be understood and to be modified. Poor code legibility may lead to errors during codification, testing and maintenance of the system.

Compilation Directives: The compilation directives in the source code should be used in a controlled way. Direct or indirect alterations of the control value of a compilation directive can cause the non-compilation or erroneous compilation of parts of the code.

Code Optimization: Code optimization in safety critical system must be avoided because the object code generated by this process may present unexpected behavior, depending on the selected optimization process.

Keep Procedures Short: Long procedures are difficult to understand and eventually to maintain even they are clean and well formatted. Therefore, procedures may be kept inside reasonable length, when it is possible, to maintain them readable.

Non-Used Source Code: Pieces of non-used codes must be avoided to prevent the unexpected execution due to deviation to the unused code region. Examples of such code pieces are the routines that have served for the code development and are not used anymore in the final system.

5. Problems of Safety-Critical Systems

There are several problems related to safety-critical systems. Some of them are direct consequence of software bugs and others are indirectly caused by hardware failures.

 From our experience in several works of safety analysis, we have identified the more important aspects that are verified in such applications:

- Inconsistent or not-expected input values;

- Inputs out of synchronism;

- Inputs obtained out of expected interval time;

- Generation of outputs out of expected interval time;

- Incapacity to treat great number of interrupts signals;

- Excess of input signals in a determined period of time;

- Non-generation of outputs;

- Non-acquisition of inputs;

- Lack of synchronization;

- Improper use of memory areas;

- Overflow/underflow;

- Stack overflow;

- Endless loop;

- Error in parameter passing;

- Error in values return;

- Improper exit from a routine;

- Improper entrance in a routine;

- Excessive execution duration of routines;

- Use of incorrect type of constants and variables;

- Deadlocks;

- Non-return of routines; and

- Problems of maintenance.

 Each one these problems can be treated with one or more of the techniques described in section 4 (table 1).

	Problems
	Defensive Programming Techniques

	Inconsistent or not-expected input values
	Test of valid values

	Inputs out of synchronism
	Test of synchronism

	Lack of synchronization
	

	Inputs obtained out of expected interval time
	Test of execution times

	Generation of outputs out of expected interval time
	

	Incapacity to treat great number of interrupts signals
	Verification of capacity

	Excess of input signals in a determined period of time
	

	Non-generation of outputs
	Test of time-outs

	Non-acquisition of inputs
	

	Improper use of memory areas
	Test of memory areas

	Stack overflow
	

	Overflow/underflow
	Test of valid values/
Exception handling

	Endless loop
	Loop control

	Error in parameter passing
	Checking function arguments

	Error in values return
	Returning error codes

	Improper exit from a routine
	Input/output tests

	Improper entrance in a routine
	

	Excessive execution duration of routines
	Test of execution times

	Use of incorrect type of constants and variables
	Checking function arguments/
Use of variables/ constants

	Deadlocks
	Test of resources use

	Non-return of routines
	Test of execution times/
Return from routines

	Problems of maintenance
	Comments in the source code/
Code legibility/
Compilation directives/
Code optimization/
Keep procedures short/
Non-used source code

Table 1. Relationship between problems and defensive programming techniques

6. Conclusions

The defensive programming is not exclusively applied to safety critical systems. This technique has been discussed as generic topic to enhance software system quality. However, the techniques described in this paper will contribute to introduce more robustness to safety critical system code. The presented techniques are not exhaustive and other techniques can be aggregated to constitute a more complete set.

Some of techniques are common to all application area. However, the refinements of other techniques may depend on specific requirements derived from the requirements of each of application area. Therefore, an appropriate set of techniques must be selected by considering other defensive aspects of the project, such as requirements, architecture and system components.

Another important point is that formal verification does not decrease the need of defensive programming. Formal verification enhances the adherence of the system to its requirements. Defensive programming will introduce checkpoints during the execution of the system.

The researchers of University of São Paulo are formalizing a methodology to safety critical system assessment, which incorporates the evaluation of defensive programming level in the systems to be assessed. The collected techniques resulted from safety assessment and software development experiences, and the set has been improved through research results.

References:

[1] Leveson, N.G. System Safety in Computer-Controlled Automotive Systems, SAE Congress, March 2000, http://sunnyday.mit.edu/papers. HTML#safety, access in 15/1/2002.

[2] International Electrotechinical Commission IEC61508 Functional safety of electrical / electronic / programmable electronic safety related system – parts 1-7. ed., Geneve, IEC Central Office, Dec., 1998.

[3] ANSI/IEEE Std 729, IEEE Standard Glossary of Software Engineering Terminology, 1983.

[4] Leveson N.G.; Safeware: System Safety and Computers, Addison Wesley Publishing Company, Inc. Nenlo Park – CA. 1.ed., 1995.

[5] Neil, S.: Safey-Critical Computer Systems, Addison Wesley Publishing Company, 1996.

[6] Cheng, D.Y., Deutsch, J.T., Dutton, R.W.: “Defensive Programming” in the Rapid Development of a Parallel Scientific Program, IEEE Transactions on Computer-Aided Design, vol.9, no.6, June 1990, 665-669.

[7] Defensive Programming Techniques, http://csciun1.mala.bc.ca:8080/~pwalsh/teaching/ 265/Notes/CS/.www/restricted/Lectures/Defensive-Programming.html, access in 10.01.2002.

[8] Robinson, J.: Defensive Programming Strategies, Visual Basic Programmer’s Journal, August/September 1994, 74-82.

[9] McCracken, D.: A Guide to PL/M Programming for Microcomputer Applications, Addison-Wesley, Massachusetts, 1978.

[10] Ellemtel: Programming in C++ Rules and Recommendations, Description M 90 0118 Uen, 1992.

[11] Yu, W. D.: A Software Fault Prevention Approach in Coding and Root Cause Analysis, p. 3-21, Bell Labs Technical Journal, April-June, 1998.

� EMBED Equation.3 ���

[image: image2.wmf]_1024231031.unknown

