A Multi-Blackboard Approach

to the Control/Monitoring of APS

I. TNAZEFTI-KERKENI, L. ARANTES and O. MARIN

Laboratoire de Paris 6

Université de Paris 6

4, Place Jussieu 75252 Paris Cedex 05

FRANCE

Insaf.Tnazefti@lip6.fr, Luciana.Arantes@lip6.fr, Olivier.Marin@lip6.fr
Abstract : - This paper presents a multi-blackboard approach to design and implement a control/monitoring system for the Automation of Production Systems. The proposed architecture is composed of several control/monitoring agents (CMAs) organised hierarchically. Communication between agents is done through a corresponding hierarchy of blackboards, in which the consistency of replicated data is maintained.

Key-Words : - Automation of production system, Multi-agent architecture, Blackboard architecture, Shared data, Consistency memory model, Java.

1 Introduction

The Automation of Production Systems (APS) is a very complex task since it has to deal with large amounts of information, different concurrent processes, interrelationship between processes and/or external components, and possible process failures. Thus, control and monitoring are essential features in such automated systems in order to insure normal execution and functioning safety.

The SA-RT/OPN system, developed in LIP2 Laboratory at Tunis Sciences Faculty [1][2], allows the control and monitoring of different phases of the development of an APS. It provides not only the real time control of processes under normal functioning, but also the detection of abnormal situations, the diagnosis of failures and the assistance in recovery procedures.

In this article, we address successively:

· the definition of the architecture of a control/monitoring system as a modular, distributed and hierarchical multi-agent system. It is composed of several control/monitoring agents (CMAs) organised hierarchically. CMAs run concurrently and interact with a centralised persistent information system (IS). Communications between a CMA parent and its CMA children on one hand, and between CMAs and the information system (IS) on the other hand, are done through blackboards [3], i.e., shared data regions.

· the presentation of our proposal for organising, diffusing and controlling information kept in the blackboards of the SA-RT/OPN system. Considering the distributed aspect of the system, we have adapted the hierarchical multi-blackboard system in order to support the replication of information. This replication aims at preventing blackboard access contention and performance degradation due to network latency. At the same time, as a data can be replicated in several blackboards, the consistency between different data copies is automatically guaranteed. Mechanisms are also offered for controlling the access to information shared by several CMAs.

This article is organised as follows. In section 2, an overview of the SA-RT/OPN system, as well as its control and monitoring features, are presented. The multi-agent architecture that we propose for controlling and monitoring an APS is described in section 3. In section 4, we define our mechanisms for the control of concurrency, replication and diffusion with respect to shared data. Finally, we conclude our work in section 5.

2 The SA-RT/OPN Method

The SA-RT/OPN method is proposed to analyse and study the flexible manufacturing systems (FMS) control. It is used for the specification and design of its real time control.

In this section, we introduce this method and we show how it has been extended to tolerate process failures.

2.1 Overview of the SA-RT/OPN method

The SA-RT/OPN method is based on a structured approach which allows the designer to apprehend the complexity of great systems using a modular and hierarchical specification. The design of the structuring model proceeds from the subdivision of the physical process into sub-groups. In the model, an entity is defined as an abstract machine composed by a group of resources (data), a group of operators and a control structure, this control structure ensures the sequencing of these operators in order to achieve a group of functions (services).

The design of the structuring model is carried out in a down to ascending and hierarchical way, as follows (Fig.1) :

· Entities of level i are grouped within a parent entity of the (i+1) level if their co-operation is useful to this parent entity.

· An entity of level i provides its services to a unique entity of the (i+1) level, that is its parent entity, it uses the services of one or several entities of the (i-1) level that are its children.

· Interactions between a parent entity and its children are expressed as orders/grants. The notion of granted service necessitates that some resources are shared between the children of the same parent.

[image: image1.wmf]level i+1

Children entities

Parent

entity

level i

level i-1

level i-2

Fig. 1. Structuring model of control

This structuring allows to design the model as an n-ary tree in which entities are nodes. Once the hierarchical architecture is defined, the structuring model is resumed in a top down way, to analyse, specify and describe the content of each entity using the devices of the SA-RT/OPN method. This structuring highlights the whole knowledge (data, processing, control, storing, …) concerning the functioning of each entity as well as its interaction with the other entities.

2.2 Integration of monitoring in the SA-RT/OPN method

The method defined above aims to assist the designer in the different phases of the development of an FMS control. But this approach only takes the normal functioning of an FMS into account. Thus, a study has been carried out in order to extend the SA-RT/OPN approach in order to tolerate process failures. The main objective of this extension is to ensure functioning safety of an FMS. This can be done by the integration of the reliability notion at the level of the design methodologies. Hence, the safety property of an FMS is obtained by a simultaneous definition of the monitoring and control systems.

The monitoring system ensures the safety of the manufacturing control system and the quality of the product in order to satisfy customer requirements. A monitoring system must be capable of obtaining the process state at any time, and of verifying that the control respects the right, intrinsic functioning conditions. When a process is in exploitation, the monitoring system detects any abnormal behaviour, fixes the origin of the failure, and executes a recovery procedure to overcome the anomaly. To achieve these different functions, the monitoring system needs a set of information, described below :

· Information on the current state of each entity, used by the control system, and the trace of states. This information gives several indications on the functioning of an entity. Because this information should be used by the monitoring system, it is obvious that the same structuring model ought to be used to describe the control and the monitoring systems. Hence, an entity has two parts: a control system and a monitoring one.

· Information on the previous states. This information records the behaviour of each entity during a fixed period of time.

· Information on the previous failures. This information concerns the origin of each failure, its degree, the recovery procedure, etc…

· Information on the structure of the FMS. Here, we essentially find information about the structure of an FMS, such as its entities and the links between them.

The architecture of the control/monitoring system is organised in hierarchical entities. Each entity corresponds to a well defined subset of the production system which controls and monitors at a given abstraction level.

The integration of monitoring on a control system may entail some additional management complexity since the amount of information may considerably increase when failure detection is provided by the system. Particularly, diagnosis and recovery features in monitoring systems require a detailed knowledge of the system functioning. Furthermore, the system may need to provide some mechanisms for co-ordination and communication among monitoring/control entities.

3 Contribution of a Multi-agent System for Control/monitoring Design

The multi-agent approach allows a set of agents to co-operate between themselves in order to resolve a problem [4]. Hence, each agent can execute one or more tasks. To achieve these tasks, an agent must be autonomous [5][6]. This approach is particularly adapted to manage complex systems by favouring the clarity and the consistency without neglecting the modularity and hierarchy [7]. The structuring method used by SA-RT/OPN is highly suitable for this approach.

3.1 Design of control/monitoring entities as agents

A multi-agent system is a group of agents which co-operate to solve a problem that cannot be efficiently cleared up on an individual basis. The definition of each control/monitoring entity will be done in such a way that it will be sufficiently autonomous and have enough expertise to carry out its task(s). An entity will be able to communicate with the other entities to share some knowledge, to ask services or to inform about its plans or decisions. This leads us to deduce that an entity has the typical characteristics of an agent (in the distributed artificial intelligence definition).

Hence, the SA-RT/OPN architecture is a loosely coupled multi-agent platform, consisting of several control/monitoring agents (CMAs), organised hierarchically, that can run concurrently. An information system (IS) stores the persistent data. A support composed of blackboards is provided for communication between each CMA parent and its CMA children or as a memory cache for IS data. (Fig.2).

[image: image2.wmf]CMA

Blackboard

CMA

Blackboard

CMA

CMA

CMA

Physical agents

level i-1

level i

level i+1

<Monitoring

information>

Information System

Blackboard

Blackboard

req

rap

CMA

CMA

Fig. 2. Hierarchical structure of CMAs of a production system

Global data are distributed based on their abstraction level. Every blackboard, related to a given level of the hierarchy, controls the information flow between a CMA parent of the same level of the blackboard and its CMA children. A specific blackboard holds only the data which the CMAs connected to it are interested in. By adopting such an approach, each blackboard provides a local view of the global information system, hierarchically modelling the current state and information about the production system management.

3.2 Why use a multi-blackboard architecture as a communication support

A blackboard is a global data structure used by agents as a communication channel, i.e., a blackboard is basically a shared region that all agents have access to [8].

Considering the control/monitoring context, several arguments motivate the use of blackboards for exchanging information among agents instead of message passing:

· For many reasons, a real time system uses a distributed architecture. In practice, it is easier to develop a distributed application based on the shared memory paradigm than on the message passing one.

· An agent is supposed to continuously take into account the evolution of data or parameters external to its domain.

· It must follow and take into account the change in functioning or configuration modes operated by other agents.

· An agent may be interested in the recent historic of the actions.

Thus, at any moment, an agent can obtain all these types of information by just accessing a blackboard. Besides, the multi-level blackboard architecture of SA-RT/OPN presents several other advantages:

· It can match the multi-level organisation of CMAs, i.e. a blackboard of a specific level can keep only the information that is useful for the CMAs of that level.

· Exchanges among child entities are done under the control of the parent entity.

· A good distribution of the information among the different blackboards, reduces the problem of access contention to a single centralised blackboard, especially when the number of CMAs is important. It can then reduce the time that a CMA waits to get an information since an access to a local blackboard takes less time than an access to a distant one.

· Blackboards can be distributed on different machines, and thus the amount of information handled by each blackboard is less important.

· A CMA may not have the right to access some information. This protection of information can automatically be assured by keeping it on a different, remote blackboard.

4 Concurrency, Replication and Diffusion Control Mechanisms

Our proposal is to provide a hierarchical blackboard support which CMAs of adjacent levels can use to communicate among themselves or to use it as a memory cache for keeping data from the information system. As several CMAs may share the same data (information), a concurrency control access mechanism must be offered by our solution. Furthermore, for performance reasons, data can be replicated on different blackboards. Thus, our multi-blackboard approach must assure the consistency between all the copies. Another point is how to inform one or more CMAs that are interested in some data that the latter has been modified. All these points are discussed in the present section.

4.1 Concurrency control mechanism

As data in a blackboard can be concurrently accessed or modified by more than one CMA, a mechanism for controlling accesses to shared data must be provided in order to prevent a CMA from reading data while it is being modified by another CMA already, or prevent two or more CMAs from simultaneously modifying the same data.

In order to control concurrent accesses, we have chosen to use read/write locks mechanisms. Locks can control or sequence concurrent CMA accesses to shared data. Thus, if a CMA wants to read a shared information from a blackboard it needs to acquire the associated lock in read mode before being allowed to read it; if it wants to update an information of the blackboard it needs to acquire the same lock in write mode. A lock in a write mode is acquired exclusively, which means that when a CMA holds a lock in write mode, all other CMAs that try to acquire the same lock will be blocked. On the other hand, concurrent reads are allowed: if a CMA has acquired a lock in read mode, other CMAs can acquire the same lock, but only in read mode.

In order to provide such lock control mechanism, we have introduced a shared data manager agent (SMA) at every level of the hierarchy of our system. Each SMA is responsible for managing a set of locks, used for the concurrency access control of data stored on the blackboards of its level or lower levels (a data may be replicated on lower levels, as it will be explained below). The lock management mechanism is shown in Figure 3.

[image: image3.wmf]level i+2

level i+1

BB

(i+1)1

BB

(i+1)2

level i

ACM

ACM

ACM

Agents physiques

level i-1

BB

(i)1

BB

(i)2

BB

(i)3

GMA

 i+1

holds Y

GMA

 i

holds Z

BB

(i+2)1

ACM

 (i+2)1

Acquires a

lock X

GMA

 i+2

holds X

Acquires a

lock X

Acquires a

lock X

Acquires a

lock Y

Acquires a

lock Z

Acquires a

lock Y

ACM

 (i+1)1

ACM

 (i+1)2

ACM

 (i)1

ACM

 (i)2

ACM

 (i)3

Fig. 3. Consistency of shared data copies mechanism

4.2 Replication of shared data

Shared data kept on a given blackboard consists of just part of the data stored on the information system (IS). In fact, a blackboard keeps only data which the CMA (CMA parent) associated with it is interested in (see Fig 2). However, as previously explained, a given persistent data stored on the IS may be requested by several CMAs. Besides, if these CMAs belong to distinct hierarchical levels, a data may be requested with different levels of abstraction/details. As we go down in the hierarchy of CMAs, a higher degree of detail of the same data is required. In other words, a CMA at a higher level than a second one has a coarser view of the data, treating then such data with a higher level of abstraction. In this way, our approach allows partial views of the same data as the information system is structured and cached with different levels of abstraction.
For performance reasons, if an IS persistent data is accessed by different CMAs, this data will be cached on the respective blackboard, associated to each of these CMAs. Consequently, different blackboards may keep a copy of a given data at the same time. However, as explained above, this data may be replicated with different levels of detail, depending on the level that the ACM belongs to.

4.3 Consistency of shared data copies

Data replication introduces the problem of keeping all the copies of the data consistent. This means that in principle when a CMA updates some information kept by its local blackboard, all copies stored in the other blackboards as well as the one stored in the IS must be updated.

As only one CMA at a time can modify a shared information in the blackboard (by acquiring the corresponding lock), all CMAs do not need to have a coherent view of the shared data permanently. Since the lock mechanism assures that no other CMA can access the shared data in the meantime, the updates that a CMA performed in some shared data while holding the lock (in write mode) can be propagated to other CMAs only when the former releases the lock. In other words, the updates on a copy of a shared information are not propagated immediately when they take place, but only when the CMA that modified the information releases the lock related to this information. This approach is known in the literature as a relax consistency memory model [9]. By relaxing memory consistency, the amount of communication between agents can be reduced, which usually results in performance improvement.

We have adopted the relaxed consistency memory model for use in our hierarchic structure of blackboards. Each blackboard is capable of diffusing to other blackboards the updates performed in its own copy of data. Hence, at a lock release operation, the blackboard whose copy of data has been updated propagates these updates to all the other blackboards which keep a copy of the data.

In order to be able to offer this consistent memory model, the state of blackboard data copies as well as IS data copies must also be controlled. This is done by the shared data manager agents (SMA). Thus, when a CMA acquires a lock in order to access some data, if the corresponding blackboard does not yet have a copy of such data, the corresponding SMA will provide it either by requesting the data to the IS, if the latter has an updated version, or requesting it to the last blackboard that updated it. SMAs also take care of updating the persistent copy of data kept on the IS periodically.

4.4 Diffusion of shared information

When the production system starts, each CMA must inform the system which types of information (shared data) it is interested in. Thus, the list of CMAs which are interested in a given shared data is kept in the structure that stores the data itself. In this way, the information that a data has been modified can be diffused to all the concerned CMAs whenever a release lock operation (in write mode) related to this data is performed. In other words, after propagating the updates to the other blackboards that keep a copy of the data, the blackboard on which the release lock operation has been performed informs all CMAs which are interested that the data has been updated. Upon receiving this information a CMA may take some new decision, consulting its local blackboard if necessary.

5 Conclusion

Taking advantage of the SA-RT/OPN initially defined to design the automated production system as a hierarchical structure of control/monitoring entities, we have studied the possibility to complete it by taking the communication problem into account.

In this paper, we propose an architecture for a control/monitoring system for the automation of production systems which is modular, hierarchically distributed and based on multi-agents. It is composed of several control/monitoring agents (CMAs), hierarchically organised. Communication between a CMA parent and its CMA children and between CMAs and the information system is established through blackboards.

One of the important characteristics of the presented approach is that blackboard structures constitute access windows to the information system for the CMAs. This means that a copy of persistent data may be replicated with different levels of detail, depending on the level that the ACM belongs to. However, data replication introduces the problem of consistency.

We have adopted the relaxed consistency memory model for copies kept on different blackboards. Each blackboard is capable of diffusing to other blackboards the updates performed on its own copy of data. However, we have introduced the coherent manager agents to control concurrent accesses to shared data.

We are currently developing a multi-blackboard support for shared data on top of DARX [10], a Java fault tolerant multi-agent framework.

References

[1] S. Ben Ahmed, Approche multi-modèles pour la spécification, la validation et la conception de la commande des systèmes flexibles de production manufacturière, Thèse d’état ès sciences en informatique, Tunis University, decembre 1997.

[2] S. Hammami, M. Moalla, I. Tnazefti-kerkeni, Integrated Approach to design and implement the control/monitoring system of APS using multi-agent techniques, 2ème Conference IFIP-IFAC-IEEE (MCPL’2000), Grenoble, France, Juillet 2000.
[3] K. Pfleger and B. Hayes-Roth, An introduction to Blackboard-Style Systems Organization, Technical Report KSL-98-03, Computer Science Department, Stanford University.

[4] J. Ferber, 97, The multi-agents systems, Technique et Science Informatiques, vol. 16, n°8, pp. 979-1012, 1997.

[5] L. Steels, A case study in the behavior oriented design of autonomous Agents, Proceeding of the Conference on the simulation of adaptive behaviour, Brighton, MIT Press, 1995.

[6] N. Sadeh & al, A Blackboard Architecture for Integrating Process Planning and Production Scheduling, Concurrent Engineering: Research and Applications, Volume 6, Number 2, June 1998.

[7] D. Hildum & al, MASCOT: An Agent-Based Architecture for Coordinated Mixed-Initiative Supply Chain Planning and Scheduling, Third International Conference on Autonomous Agents (Agents'99), Seattle WA, May 1999.

[8] M. Occello and Y. Demazeau, Building Real Time Agents using Parallel Blackboards and its use for Mobile Robotics, IEEE International Conference on System, San Antonio, 1994.

[9] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A.Gupt and J. Hennessy. Memory consistency and event ordering in scalable shared-memory multiprocessor, Proceedings of the 17th International Symposium on Computer Architecture, pp. 15-26, May 1990.

[10] Olivier Marin, Pierre Sens, Jean-Pierre Briot and Zahia Guessoum, Towards Adaptive Fault-Tolerance For Distributed Multi-Agent Systems, in Proceedings of ERSADS'2001, pp. 195-201, Italy, May 2001.

_1088512092.doc

CMA

Blackboard

CMA

CMA

CMA

Blackboard

Blackboard

Blackboard

CMA

CMA

CMA

Physical agents

level i-1

level i

level i+1

<Monitoring information>

Information System

req

rap

_1089122658.doc
[image: image1.bmp]

BB(i+1)1

BB(i+1)2

ACM (i)3

ACM (i)2

BB(i)2

BB(i)1

BB(i)3

ACM

ACM

ACM

ACM (i+1)1

Agents physiques

level i-1

level i

Acquires a lock Z

ACM (i+1)2

ACM (i)1

GMA i+2 holds X

Acquires a lock X

level i+2

level i+1

BB(i+2)1

ACM (i+2)1

GMA i+1 holds Y

Acquires a lock Y

Acquires a lock X

Acquires a lock X

GMA i holds Z

Acquires a lock Y

_1066040603.doc

objet o

Verrou-lecture

Verrou-lecture

Verrou-lecture

Verrou-écriture

objet o

tn nivi+2

tn nivi+1

tn nivi-1

tn nivi

V(l)

V(l)

V(l)

AGC

journal

objet o

SI

ACS

Tableau noir

ACS

ACS

ACS

objet o

Tableau noir

objet o

Tableau noir

objet o

Tableau noir

_1068895594.doc

objet o

Verrou-lecture

Verrou-lecture

Verrou-lecture

Verrou-écriture

objet o

tn nivi+2

tn nivi+1

tn nivi-1

tn nivi

V(l)

V(l)

V(l)

AGC

journal

objet o

SI

ACS

Tableau noir

ACS

ACS

ACS

objet o

Tableau noir

objet o

Tableau noir

objet o

Tableau noir

_1088510993.doc

level i+1

Parent entity

Children entities

level i

level i-1

level i-2

