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Abstract:- To detect a fault in software, a test case execution must enable an intermediate error to propagate to
the output. We describe two specification-based mutation testing methods that use a model checker to guarantee
propagation of faults to the visible outputs. We evaluate the methods empirically and show that they are better
than the previous “direct reflection” approach.
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1 Introduction
Specification-based testing is a black-box technique,
that is, it assumes that internal states of the program
implementing the specification are unknown, hence
failures can only be detected in external responses.
Although model checkers can be used to generate
tests [3, 5], existing methods allow the model checker
to choose tests that do not cause faults to propagate to
the program’s output. Further details, references and
examples can be found in [13].

Goradia [9] presents typical cases that prevent a
fault in an intermediate state from propagating to
the output. For example, in a relational expres-
sion such asstate_var > z , an incorrect value of
state_var may still yield the correct Boolean value
of the relational expression.

In this paper, we present two new approaches using
model checker to guarantee that tests cause detectable
output failures. We briefly introduce model checking,
test generation using model checkers, and mutation ad-
equacy criterion here.

1.1 Model Checking
Model checking is a formal technique based on state
exploration. Input to a model checker has two parts.
One part is a state machine defined in terms of vari-
ables, initial values for the variables, environmental
assumptions, and a description of the conditions un-
der which variables may change value. The other part
is temporal logic expressions over states and execution

paths. Conceptually, a model checker visits all reach-
able states and verifies that the temporal logic expres-
sions are satisfied over all paths. If an expression is
not satisfied, the model checker attempts to generate a
counterexample in the form of a sequence of states.

A common logic for model checking is the
branching-time Computation Tree Logic (CTL) [12],
which extends propositional logic with temporal op-
erators. For example, a CTL formulaAG safe
means that all reachable states are safe, andAG (re-
quest -> AX response) means that a request is
always followed by a response on the next step.

We use SMV, a CTL symbolic model checker [12].
In SMV, a specification consists of one or more mod-
ules. One module, namedmain , is the top level
module in SMV. Fig. 1 is an SMV example derived
from [14]. We refer to this example throughout the pa-
per. Variablesd, b, andf are inputs,e anda are inter-
mediate variables. The statementinit(e) := 0;
setse to 0 initially. The next value ofe is 1 if the
guard f = On is true, otherwise it is0. The output
is the variableout , which may beLow or High . Its
value isHigh if a is greater than 10, otherwise it is
Low. TheSPECclause states that iff is On, it is possi-
ble to get to some state whereout is High . We often
drop the keywordSPECwhen clear from the context.

1.2 Generating Software Tests
Model checking is being applied to test generation and
test coverage evaluation [3, 5]. In both uses, one first



MODULE main
VAR

d: 0..5; b: 0..11;
f: {On, Off};
out: {Low, High};
a: 0..16; e: 0..1;

ASSIGN
init(e) := 0;
next(e) := case

f = On : 1;
1 : 0;

esac;
a := e * d + b;
out := case

a > 10 : High;
1 : Low;

esac;
SPEC AG (f = On -> EF out = High)

Fig. 1: An SMV Example

chooses a test criterion [8], that is, decides on a philos-
ophy about what properties of a specification must be
exercised to constitute a thorough test.

One applies the chosen test criterion to the specifi-
cation to derive test requirements, i.e., a set of individ-
ual properties to be tested. To use a model checker,
these requirements must be represented as temporal
logic formulas [2]. To generate tests, the test crite-
rion is applied to yield negative requirements, that is,
requirements that are considered satisfied if the corre-
sponding temporal logic formulas are inconsistent with
the state machine. For instance, if the criterion is state
coverage, the negative requirements are that the ma-
chine is never in state 1, never in state 2, etc.

When the model checker finds that a requirement is
inconsistent, it produces a counterexample. Again, in
the case of state coverage, the counterexamples would
have stimulus that puts the machine in state 1 (if it is
reachable), another to put the machine in state 2, etc.

The set of counterexamples is reduced, or win-
nowed, by eliminating duplicates and those that are
prefixes of other, longer counterexamples.

1.3 Specification Mutation Criterion
Mutation adequacy [6] is a test criterion that naturally
yields negative requirements. The specification-based
mutation analysis scheme in [3] applies mutation oper-
ators to the state machine or the temporal logic expres-
sions yielding a set of faulty, or mutant, expressions.

Some mutation operators are replacing a variable with
another variable, replacing an integer variablea with
a+ 1, replacing a conjunction with a disjunction.

Any particular mutant might be consistent or incon-
sistent with the state machine [2]. A consistent mutant
is a temporal logic formula that is true over all possible
executions defined by the state machine. Such mutants
are not useful and may be discarded. A mutation ad-
equate test set should distinguish between the correct
behavior and the behavior of inconsistent mutants.

The rest of the paper is organized as follows. Sec-
tion 2 briefly reviews similar previous work and the ex-
isting specification-based mutation method. Section 3
presents our two approaches: in-line expansion and
state machine duplication (SM duplication). Section 4
uses the example in Fig. 1 to compare approaches. In
the second part of the section, we evaluate the effec-
tiveness of the approaches at detecting seeded faults
in a C program implementing a portion ofTCAS. Our
conclusions are in Section 5.

2 Existing Approaches
First, some terminology. Afault is a defect in the code,
informally, a bug. A (visible)failure is an unaccept-
able result of execution on some test data; in other
words, it is observable incorrect behavior. A failure
is caused by one or more faults. Apotential failure, or
potential error, is an intermediate incorrect result.

2.1 Related Work
There is an extensive body of research in program-
based testing that studied conditions for detecting
a fault from external responses [15, 9]. The RE-
LAY model [15] defines the revealing conditions un-
der which a fault is detected. First, a potential er-
ror originates at the smallest subexpression containing
the fault. Then the potential error propagates through
computations and information flow until a failure is re-
vealed. Test data can be selected to satisfy revealing
conditions. In our work we rely on the model checker
to achieve error propagation.

Program mutation testing in its original
formulation—often referred to as strong mutation—
requires the output of a mutant to differ from the
original. Weak mutation [10] only requires that the
execution of a component of the mutant and the orig-
inal produce different values. Since in this paper we
deal with visible failures, we require strong mutation.



AG (f = On -> AX e = 1)
AG (!(f = On) -> AX e = 0)
AG (a = e * d + b)
AG (a > 10 -> out = High)
AG (a <= 10 -> out = Low)

Fig. 2: Applying Direct Reflection

Fabbri et. al. [7] categorized mutation operators
for different components of Statecharts and provided
strategies to abstract and incrementally test the com-
ponents.

2.2 Direct Reflection
The test criterion we concentrate on in this paper is
specification-based mutation adequacy. It is imple-
mented by mutating temporal logic formulas. These
formulas may be derived from the state machine by a
mechanical process calledreflection[2, 1].

Fig. 2 contains formulas derived from the assign-
ment statements in Fig. 1. For instance, thenext
clause for the variablee in Fig. 1 is reflected into
the first two formulas. The formulas directly reflect
the state machine transition relation; we refer to this
method asDirect Reflectionto differentiate it from the
In-line expansionapproach which we describe in Sec-
tion 3.1.

For each mutant, the model checker finds a coun-
terexample that leads to a potential failure if possible.
However, there is no guarantee that the potential fail-
ure will propagate to a visible output. Consider a mu-
tant of the third formula in Fig. 2:

AG (a = e * (d + 1) + b) (1)

Choosingb = 0 , d = 0 , andf = On shows an in-
consistency in an intermediate variablea, but not in
the output variableout . Such a test is of little value.

3 Two New Approaches
In this section we present two new approaches which
use a model checker to produce counterexamples that
cause faults to be visible.

3.1 In-line Expansion
In this approach, only reflections of the transition re-
lation for output variables are generated and consid-
ered for mutation. In these reflected temporal logic
formulas, any intermediate variables are replaced with

AG (f=On -> AX(d+b>10 -> out=High))
AG (f!=On -> AX(b>10 -> out=High))
AG (f=On -> AX(d+b<=10 -> out=Low))
AG (f!=On -> AX(b<=10 -> out=Low))

Fig. 3: Applying In-line Expansion

in-line copies of their transition relations. This substi-
tution is performed repeatedly until the formulas are
comprised exclusively of input and output variables.
Fig. 3 contains formulas derived from the statements in
Fig. 1 using in-line expansion method. Since only in-
puts and outputs appear, the model checker finds coun-
terexamples that affect the outputs. As in direct reflec-
tion, all mutants can be checked against the original
state machine in a single run.

If there are conditional expressions in the transi-
tion relations for intermediate variables, this approach
leads to an exponential increase in the number or size
of logical formulas: different paths must be specified
explicitly. The example in Fig. 1 has two conditional
statements, each with two branches, for a total of four
possible paths, so there are four formulas in Fig. 3.

3.2 State Machine (SM) Duplication
The rest of Section 3 deals with the other approach:
duplicating the state machine. Suppose the model
checker compares the external behavior of the origi-
nal and mutated state machines. Any counterexamples
produced must exhibit failures, that is, inputs must be
chosen to manifest differences in the outputs. To facil-
itate this comparison, we begin by duplicating the state
machine and insure that the duplicate always takes the
same transition as the original. Then we can mutate
the duplicate to implement the mutation test criterion.

More formally, letSM be the description of the
original state machine. LetSMd be a duplicate ofSM
containing a mutation.SM andSMd have separate
sets of outputs. We combine the two machines into
a single state machineSM+. We then assert that the
values of the outputs ofSM andSMd are identical
overSM+. If SMd has an observable fault, the model
checker will produce a counterexample leading to the
state whereSM andSMd differ in an output value.

From the counterexample, we can construct a test
case containing values for inputs and the expected val-
ues for the outputs of the original state machine,SM .
If the specification allows nondeterministic behavior,
the expected outputs might not be adequate as an ora-
cle. Nevertheless, the tests are expected to cause some



MODULE original(d, b, f)
VAR

out: {Low, High};
a: 0..16; e: 0..1;

ASSIGN
... same transitions as in Fig. 1
MODULE duplicate(d, b, f)
... same as original, to be mutated
MODULE main
VAR

d: 0..5; b: 0..11;
f: {On, Off};
good : original(d, b, f);
mutant : duplicate(d, b, f);

SPEC AG (good.out = mutant.out)

Fig. 4: A Duplication Example

faulty implementation to exhibit failures.

3.3 Handling Nondeterminism
If there are any nondeterministic transitions in the orig-
inal state machine,SM andSMd embedded inSM+

are allowed to make different choices. For example,
the statementvar := {1, 2}; assignsvar the
value of 1 or 2.

When a variable is assigned a set of values, all pos-
sible values are explored independently of each other.
If SM is duplicated naively, SMV could provide a
counterexample that chooses one value of a variable
in SM and another value of the corresponding vari-
able inSMd, that is, the “difference” arises from acci-
dental differences or differences in execution, not from
semantic differences. We can forceSM andSMd to
make the same choices by declaring a new global vari-
able for each nondeterministic choice. We modify both
SM andSMd to choose depending on this common
global variable.

While this method is general, it is excessive for vari-
ables without explicit transitions, such as inputs. We
can simply move their declarations to themain mod-
ule and pass them toSM andSMd as parameters.

3.4 An Illustrative Example
Consider the sample model in Fig. 1. As Fig. 4 illus-
trates, we renamemain to original 1, move decla-
rations of input variables into the newmain module,
instantiate theoriginal andduplicate modules

1If the original state machine description has more than one
module, all of them must be renamed for duplication.

(SM andSMd, respectively) in the newmain , and
pass inputs as parameters. The CTL formula asserts
that outputs of the original and mutant modules are al-
ways the same.

Assignment statements in theduplicate module
from Fig. 4 are candidates for mutation. Some muta-
tions may result in a semantically invalid SMV model.
Two cases are common. First, a mutation operator re-
placing one variable with another may generate a mu-
tant containing a circular dependency. Our tools use
SMV’s built-in analysis to automatically remove such
mutants from further consideration. Second, the value
of an expression on the right hand side of an assign-
ment in the mutant may be outside of the range of the
variable on the left hand side. Consider a mutant of an
assignment for variablea in Fig. 1.

a := e * (d + 1) + b; (2)

We change the declaration ofa in the mutant to expand
its range when needed.

The example only shows synchronous composition
of modules. In case of interleaving, introduced by
the keywordprocess in SMV, special care must be
taken to ensure that the processes of original and dupli-
cate machines follow each other in an orderly fashion.

3.5 Sharing Independent Variables
Some parts of the model may not depend on the vari-
able affected by a particular mutation. Strictly speak-
ing, for any particular mutation, we need only dupli-
cate the variable whose assignment is being mutated
and any dependent variables. Dependency analysis can
stop at output variables. Such dependency can be de-
termined using slicing [16]. If the model has many
modules, only the module with the mutation and any
dependent modules need to be duplicated.

4 Comparison of Approaches
We performed experiments to compare the three ap-
proaches. First, we apply direct reflection, in-line ex-
pansion and SM duplication to the example in Fig. 1
and compare them by measuring the tests generated for
each approach against the other methods. Second, we
compare their effectiveness for detecting seeded faults
in an implementation of a small portion ofTCAS.

4.1 Specification-based Coverage
In Table 1, “Mutants” is the total number of syntacti-
cally valid mutants, including consistent and duplicate



Method Mutants UIMs UTs
Direct 91 21 9
SM Dupl. 28 21 7
In-line 128 17 10

Table 1: Number of Mutants and Tests.

Coverage Metric
Method Direct SM Dupl. In-line
Direct 100% 90% 76%
SM Dupl. 100% 100% 88%
In-line 100% 100% 100%

Table 2: Cross-Scoring of Methods.

mutants. “UIMs” is the number of valid, behaviorally
unique, inconsistent mutants. In other words, this ex-
cludes all consistent mutants and all but one copy of
inconsistent mutants which are semantic duplicates of
other mutants. “UTs” is the number of unique coun-
terexamples or tests after duplicates and prefixes of
longer counterexamples are removed.

A method can serve both for generation of tests
and as a metric for evaluation of existing tests.
Specification-based mutation coverage metric was in-
troduced in [2]. We evaluate a methodM using a
coverage metricC as follows. We generate mutants
using methodC, but only count unique, inconsistent
mutants. LetN be the number of these mutants. We
turn the unique counterexamples generated byM into
constrained finite state machines (CFSMs) represent-
ing individual execution sequences of the state ma-
chine [1], then use SMV to find which mutants from
C are inconsistent with (killed by) at least one CFSM.
Let k be the number of mutants killed. The coverage
is k/N . A method gets 100% coverage when evalu-
ated against itself as a metric. Table 2 presents cross-
coverage of the three methods.

SM duplication method performs better than direct
reflection: it kills 100% of direct reflection mutants,
while direct reflection kills only 90% of SM duplicati-
on mutants. The following example helps explain why.

SM duplication method produces this counterexam-
ple to detect the mutant statement (2), Section 3.4:

d = 0; b = 0; f = 0ff;
f = On;
b = 10; f = Off;

Each execution step appears on a separate line. Vari-
ables not reported are unchanged from the previous
step. At the last step,a is 1 ∗ 0 + 10 = 10 and

out is Low in the original state machine, buta is
1 ∗ 1 + 10 = 11 andout is High in the mutant ma-
chine.

Direct reflection method produces this counterex-
ample to detect the corresponding mutant, formula (1),
Section 2.2:

d = 0; b = 0; f = 0ff;
f = On;
f = Off;

At the last step, the value of the intermediate variable,
a, is 0, which is inconsistent with the mutant formula.
However, whena is either 0 or 1,out is Low. Hence
the test will detect the mutant only if intermediate vari-
ables are visible.

4.2 Effectiveness in Detecting Faults
Our goal is to reduce the number of faults in programs.
Therefore, we evaluate the effectiveness of the meth-
ods for detecting seeded faults in a small but realistic
program. The subject program is a portion ofTCAS
— aircraft collision avoidance. It is a part of a set of
programs that comes originally from [11].

The program consists of 9 procedures and 135 non-
blank non-comment lines of C code. There are 12 in-
put variables and one output variable. The program
comes with 39 faulty versions derived by manually
seeding realistic faults. 26 versions have single muta-
tions, the rest involve either multiple changes or more
complex changes.

In Table 3, “Mutants” and “UTs” have the same
meaning as in Table 1. “Time” is the time (in seconds)
required to generate the tests on a Pentium2 4 1.7 GHz
PC with 1 GB of RAM running the Linux OS. “Cov-
erage” is the number of faulty versions detected by the
method divided by the total number of faulty versions.
We used NIST’s Test Assistant for Objects (TAO) [4]
to turn the counterexamples into concrete test cases.

Table 3 shows that SM duplication and in-line ex-
pansion approaches detect 100% of faulty versions
while direct reflection detects only 59% of the faults.
We attribute the magnitude of the difference to a rela-
tively large intermediate state of the program.

The in-line expansion method produced by far the
largest number of mutants and test cases of the three
methods. The SM duplication method generated the
smallest number of mutants and test cases, yet it is as
effective as the in-line expansion method in detecting

2Pentium is a registered trademark of Intel Corporation.



Method Mutants UTs Time Coverage
Direct 948 83 3.5 59%
SM Dupl. 464 52 9 100%
In-line 3062 139 19 100%

Table 3: Effectiveness in Detecting Seeded Faults

seeded faults. The SM duplication method took con-
siderably longer due to the overhead of starting SMV
for every mutant.

5 Conclusion
We presented two new methods, in-line expansion
and state machine (SM) duplication, that use a model
checker to choose tests which ensure fault propagation
to visible outputs. We compared these methods and
the previous direct reflection method based on “cross-
scoring”. In-line expansion and SM duplication meth-
ods got better coverage than direct reflection.

The in-line expansion method is not as useful in
practice since it quickly increases the size and number
of logic formulas. The SM duplication method dupli-
cates the state machine thus increasing the size of the
state space. The running example is tiny and theTCAS
specification is relatively small, so the limits of scala-
bility have not been addressed. Dependency analysis
by slicing is one way to improve scalability.

Our experiments suggest that the SM duplication
and in-line expansion methods are much more effec-
tive than direct reflection for generating black-box
tests. To our knowledge, SM duplication is the first
method that relies on a model checker in order to auto-
matically generate tests that guarantee fault propaga-
tion to the outputs.
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