Analysis of TCP/IP Protocol Processing in Gigabit Networks

RALFLEHMANN, MIRKO BENZ
Institute for System Architecture, Chair for Computer Networks
Dresden University of Technology
01062 Dresden
GERMANY

{lehmann, benz} @rn.inf.tu-dresden.de

http://www.rn.inf.tu-dresden.de

Abstract: - Gigabit networks cannot be fully utilized even by today’s high end systems. The processing
requirements of applications and advanced services like quality of service or security processing aggravate
this situation which will get critical with next generation networks. To analyze these shortcomings, this paper
presents the measurement results of processing and queuing times of TCP packets in Gigabit networks using
the Linux network protocol stack. Finally, possible directions towards protocol acceleration are outlined.

Key-Words: - TCP/IP, Local Area Network, Gigabit network, measurement, processing time, queuing time

1 Introduction

With the growth of the Internet and the involved in-
crease of data volume, the processing of network
protocols requires an increasing amount of overall
computing of host processors. Therefore, even to-
day’s high end systems cannot fully utilize gigabit
networks and support advanced services at the same
time.

The majority of currently transmitted network
data use protocols based on TCP/IP. Beside the most
frequently used protocol — HTTP for web based ap-
plications — network storage solutions using iSCSI
gain an increasing relevance. Most transmission
protocols based on TCP use request-response hand-
shaking with only different message sizes for the re-
quest and response, respectively. Thus, for a signif-
icant speedup of such data transmissions, the TCP
protocol processing has to be accelerated. For such
an acceleration approach, fundamental knowledge
of protocol processing and its bottlenecks is re-
quired.

In the following chapter, we give an overview of
the fundamental operation of the Linux TCP proto-
col processing. Afterwards, we describe our proto-
col processing measurements and the results for the
send and the receive path of the network interface,
the IP and the TCP layer.

2 Linux TCP Stack Overview
2.1 Receive Path
Figure 1 shows a schematic overview of the Linux
TCP receive path.

Every network packet is received by the device
driver usually initiated by an interrupt started by the

‘ Application ‘

Input Queue

1

‘ Socket Layer ‘

Input Queue

1

‘ TCP Layer ‘

Input Queue

I

IP Layer

Input Queue

1

‘ Interface Layer ‘

Input Queue

l

‘ Device Driver ‘

Figure 1: Linux TCP Stack — Receive Path

network interface card. The interrupt handler puts
the network packets into the input queue of the inter-
face layer and allocates new memory for the receive
buffers.

After that, Ethernet header information of the
network packet will be extracted and handled by the
interface layer. The Ethernet header is used for fil-
tering and selection of the next protocol queue — in
case of IP the input queue of the IP layer.

The IP layer implementation extracts the IP
header information and forwards TCP packets either
directly to the TCP layer or to the input queue of the
TCP layer depending of the state of utilization of the
TCP engine.

Finally, the TCP header information of the pack-
ets will be handled by the TCP layer. The extracted
application data will be sent to the input queue of
the socket layer.

2.2 Send Path
A schematic overview of the send path is shown in
figure 2.

‘ Application ‘

3

Input Queue

‘ Socket Layer ‘

I

Input Queue

‘ TCP Layer ‘

f

Input Queue

‘ IP Layer ‘

Input Queue

3

‘ Interface Layer ‘

i

Input Queue

‘ Device Driver ‘

Figure 2: Linux TCP Stack — Send Path

Like receive path processing, every network pro-
tocol layer has an input queue, some with config-
urable size. The application data is delivered to the
socket layer and then to the TCP layer. Big mes-
sages are split into smaller packets. Afterwards, the
checksum is computed and the TCP protocol head-
ers are built. The IP layer is responsible for the
ascertainment of routing information necessary for
network interface selection.

2.3 Generic TCP data processing

Due to the wide utilization spectrum, the TCP pro-
tocol is very complex. However, in today’s local
area networks only a small amount of the whole pro-
tocol implementation is used for data transmission.
All other parts are responsible for signalling and er-
ror handling, but modern local highspeed networks
have very low error probability.

3 TCP Stack Processing Measure-

ment

3.1 Experimental Setup

Since every measurement influences the results, its
impact on the measurement should be minimized.
A tool with these characteristics and the possibility
to insert dynamic measurement probes without re-
boots offers DProbes [5] in conjunction with Linux
Trace Toolkit [10]. By using DProbes, it is possi-
ble to insert watchpoints dynamically to monitor the
flow of the network packets and log the processing
time of every packet at the watchpoints. Another
possible method for measurements is the Fast Ker-
nel Trace kit, specified in [11]. In comparison to
DProbes, only static measurement points with a cir-
cumstantial way of analysis can be used. Therefore,
the DProbes solution was preferred.

For measurement of the data packet processing
times, the following measurement points were in-
serted into the receive and the send path of Linux
TCP processing (see figures 1 and 2):

TCP receive path
o Start of device independent Ethernet process-
ing
e End of Ethernet processing — enqueuing to IP
layer

e Dequeue of IP queue — start of IP layer pro-
cessing

e End of IP processing — enqueuing or handover
to TCP layer

e Dequeuing of TCP queue — start of TCP layer
processing

e End of TCP processing — enqueuing to Socket
queue

TCP send path

e Start of TCP processing — for packet tracing
after split of message into transmittable parts

e End of TCP processing — handover to IP layer
queue

e Start of IP processing

e End of IP processing — handover to Ethernet
processing queue

e Start of Ethernet device processing

e End of Ethernet device processing — triggering
the transmission interrupt

Furthermore, different watchpoints were located
in the error handling part of the protocol layers to
validate the data path in a local network.

The only modification of the Linux kernel was
adding an identifier to the network packet buffer
structure sk_buff [9] to distinguish the various net-
work packets especially at the queues and allow
packet tracing during protocol stack processing.
Thus, every buffer structure got an unique number
at creation time.

The measurement environment consists of

e Pentium Il (800MHz) running Kernel 2.4.18
with DProbes patch applied

e Dual Athlon (1,4GHz) running Kernel 2.4.18

e DLink DGE-550T network cards (Gigabit Eth-
ernet network card)

For data transmission the performance measure-
ment software netperf [4] was used. To involve a
wide range of transmission scenarios, the measure-
ment was made using request-response data trans-
missions with a constant request message size of
128 bytes and a variable response size between 256
and 65536 bytes with steps of 256 bytes. For com-
parable results the transmissions were done in both
directions.

3.2 TCP Stack Processing Measurement
Results
3.2.1 Processing Time by Message Size

200

180
160 AN,
140
120

100

Bandwidth (Mbit/s)

80

60

40

20

0 T
° S LR S G R R R I
CANSRAGN R O S R . S s
[S S I 2 A S
Message size (Byte)

o & & >
® & H &
& E

Figure 3: Bandwidth by response message size

The results of the measurement of the average
packet processing and queue time in the receive path
are shown in figure 4. It illustrates the increasing
queue time depending on the response message size
due to a slower packet processing in comparison to
the packet receive rate. With increasing message

1400

WTCP Layer
1200 OTCP Layer Queue
OIP Layer

1000
mIP Layer Queue

800 Binterface Layer

600

Processing time (us)

400

200

oo

T e N P P A SN SR S L A SR S N
& QY D A% AV @ @ © 0 Y N o5
S i A A A

Message size (Byte)

Figure 4: Processing time by response message size
(receive path)

size, the request-response scenario will almost be-
come a streaming scenario with at last maximum
bandwidth usage as shown in figure 3. Due to the
relatively slow host processor, only a small amount
of the line speed can be used. If the maximum
of usable transmission speed is reached, the queu-
ing times of the packets stay at a relatively constant
maximum level even with increasing message sizes.

The Ethernet MTU size of 1500 bytes causes
peaks in the graphs every 1448 bytes of the mes-
sage size since every message is split into parts of
1448 bytes plus 20 bytes for the IP and 32 bytes for
the TCP header information. Due to the usage of
a request-response transmission, the last packet of
every message is mostly not fully filled with appli-
cation data.

1000

BTCP Layer
OTCP Layer Queue
OIP Layer

@IP Layer Queue

Winterface Layer

Processing time (s)
a
3
8

S K F P S
® & L F S
&

\J 2 2 > S © v > o O o
UG S S R S R
LA S S SR O M.

Message size (Byte)

Figure 5: Processing time by response message size
(send path)

The measurement results of the TCP send path
in dependency to the used message size are demon-
strated in figure 5. It shows the processing time for
every transmitted messages. All messages are split

into parts of 1448 bytes. As seen in figure 3, the
used measurement environment cannot fully utilize
Gigabit Ethernet. Thus, the queue times between
the protocol layers for every network packet are at a
relatively constant low level.

3.22 Queuingtimes

250

B Queue time IP to TCP Layer

B Queue time Interface to IP Layer

ue time (us)

Overall Quer

0 20 40 60 80 100 120 140 160 180 200 220 240
Packet counter

Figure 6: Increase of queuing time (response mes-

e

0 60 80 100 120 140 160 180 200 220 240
Packet counter

Figure 7: Time difference between sequenced pack-
ets (response message size 8192 bytes)

To validate the assertion of too slow protocol
processing and the therefore increasing queue times,
the receiving of data with selected response message
sizes is considered next.

Figure 6 shows the periodically increasing queue
times using a response message size of 8192 bytes
every 6th transmitted packet (the message of 8192
bytes is split into 6 messages of 1448 bytes). As
demonstrated in figure 7, the queue times are mini-
mized when waiting for the next request message to
be sent. Since the IP layer queue delay time is rel-
atively constant at a level of 100 us, the TCP layer
queue delay time of every packet differs heavily.

B Queue time IP to TCP Layer
B Queue time Interface to IP Layer

time (us)

Overall Queue

0 20 40 60 80 100 120 140 160 180 200 220 240
Packet counter

Figure 8: Increase of queuing time (response mes-
sage size 65536 bytes)

1600

1400 -
1200 4

EX

= 1000 4

3

800 1

600

Time differenc:

400

200 A

0

0 20 40 60 80 100 120 140 160 180 200 220 240
Packet counter

Figure 9: Time difference between sequenced Pack-
ets (response message size 65536 bytes)

The queue times when transmitting response
messages of a size of 65536 bytes is shown in fig-
ure 8. Since the response message size is larger than
the TCP send window size of the sender, an addi-
tional TCP acknowledgement packet has to be trans-
mitted between the send bursts for every response
message. Therefore, the queue times are increased
in two steps. This is also demonstrated in figure 9,
which illustrates the time difference between receiv-
ing two sequential network packets. Besides the re-
quest delay, a delay for acknowledgement process-
ing is shown. In comparison to the queue times of
receiving response messages of 8192 bytes, the in-
crease of the layer queue times of the IP is contrary
to the queue time of the TCP layer. This is caused
by the different processing time for the IP and the
TCP layer as illustrated in figure 10.

3.2.3 Bottleneck search
Because of the increasing queue times as shown in
figures 4, 6, and 8, the real packet processing times

Processing time (us)

© L@ PSP P S
D' 0 A0 7 9 & N Y WX (&
EE O I R A S &

Message size (Byte)

Figure 10: Real packet processing time by message
size (receive path)

Processing time (us)

3 AN]
Nef o)
05" >
R

S S S RGN I Gl R J
%) © A\ % N} NS VA G
[S S S i R S

Message size (Byte)

Figure 11: Real packet processing time by message
size (send path)

have to be considered. Figure 10 illustrates only the
processing time of the protocol receive path and fig-
ure 11 shows the processing time for the send path.

As shown, the processing times are relatively
constant, only slightly increasing. The receive path
takes about 20 to 23 us computing time, the send
path only 10 to 12 us per network packet. For real
send processing, the computing time for the mes-
sage splitting has to be added. Thus, the TCP pro-
tocol processing takes the largest slice of the com-
puting time. It is caused especially by the extensive
checksum and window computing.

4 Acceleration Approach

As a result of the measurement of the protocol data
path, the processing of the network packets has to
be accelerated to get gigabit line speed. Assum-
ing an ideal implementation of a protocol stack with
no transmission overhead, the maximum processing
time per Ethernet packet is about 12,11 us (1GBit =

125000000 Bytes = ca. 82563 Ethernet packets of
1514 bytes to be transmitted every second).

Because of the needs of standard conformity to
the network protocol RFCs [2, 3], the only way for
an acceleration on today’s end systems is the usage
of special hardware. As shown in [1], the extraction
of the TCP receive data path and the send path from
the software stack and the implementation onto spe-
cialized hardware is necessary to get line speed and
relieve the host CPU.

5 Related Work

Much attention has been focused on the design of
interconnection networks, network interfaces, and
even fast messaging layers. As a consequence of
poor TCP performance, many transport layer alter-
natives were proposed as well. However, due to
success of TCP those alternatives are not widely
used. Hence, understanding TCP behaviour and
performance characteristics is an important step to-
wards reducing overheads in software implemen-
tations and optimizing utilization of today’s high
speed networks. An important aspect is to precisely
measure required CPU cycles and the delays due to
protocol processing.

A light weight messaging layer is proposed in
[6]. It presents a detailed analysis and a correla-
tion of the cost analysis with network hardware fea-
tures which identifies the key cost components and
attributes them to specific user communication ser-
vices. It suggests that the majority of protocol pro-
cessing could be avoided if the network could pro-
vide properties like in order delivery. However, such
assumptions are only valid for local area networks.

A performance analysis for a FDDI network is
described in [7]. It classifies overhead categories
into data touching and non-data touching overheads.
Furthermore, it presents UDP and TCP processing
overhead times for a Berkeley Unix derived soft-
ware stack implementation. Timing measurements
are provided for protocol processing functions like
checksum, data movement, error checking, and so
forth. In contrast, our measurements provide tim-
ing details based on communication layers includ-
ing queuing times. The MTU for FDDI is 4352
bytes. This is significantly larger than a standard
Ethernet MTU. Furthermore, we evaluated higher
speed networks and PC systems. In [8] the authors
extend their measurements by providing optimiza-
tion approaches especially for copy operations and
checksum computations.

6 Conclusionsand Future Work
Supporting high performance networks and ad-
vanced services at the same time presents a chal-
lange for today’s protocol implementation architec-
tures. Even high end systems cannot fully utilize Gi-
gabit networks. This was proven by real time mea-
surements of the protocol processing of the receive
data path as well as the send data path. To reduce the
overall processing time, especially, when receiving
data, the TCP layer has to be accelerated particulary.

Based on these results, we will analyze addi-
tional network protocols based on TCP and/or IP
like iISCSI and IPSec.

References:

[1] Mirko Benz and Ralf Lenmann. TCP Accel-
eration based on Network Processors. In SDA
2002 — Workshop on System Design Automa-
tion, pages 91-100, Pirna, Germany, 2002.

[2] Defense Advanced Research Project Agency.
Internet Protocol, 1981. RFC 791.

[3] Defense Advanced Research Project Agency.
Transmission Control Protocol, 1981. RFC
793.

[4] HP Information Networks Division. Net-
perf: A Network Performance Benchmark —

http://www.cup.hp.com/netperf/NetperfPage.html.

Internet WWW document.

[5] 1BM Linux Technology Cen-
ter. Dynamic Probes for Linux -
http://oss.software.ibm.com/developer/
opensource/linux/projects/dprobes/, 2002.
Internet WWW document.

[6] V. Karamcheti and A. A. Chien. Software

overhead in messaging layers: Where does the
time go? ACM SIGPLAN Notices, 29(11):51-
60, Nov. 1994.

[7] J. Kay and J. Pasquale. The Importance of
Non-Data Touching Overheads in TCP/IP. In
1993 SIGCOMM, pages 259-268, San Fran-
cisco, CA, 1993.

[8] Jonathan Kay and Joseph Pasquale. Profil-
ing and Reducing Processing Overheads in
TCP/IP. IEEE/ACM Transactions on Network-
ing, 4(6):817-828, 1996.

[9] Linux Kernel Source. skbuff.h, skbuff.c, 2001.

[10] Opersys. The Linux Trace Toolkit —
http://www.opersys.com/LTT/, 2002. Internet
WWW document.

[11] R. Russell and M. Chavan. Fast Kernel
Tracing: A Performance Evaluation Tool for
Linux, 2001.

