A New Active Network Environment

FLÁVIO ARNALDO BRAGA DA SILVA

EMÍLIO EIJI YAMANE

RODRIGO CAMPIOLO

Department of Informatic (DIN)

State University of Maringá (UEM)

Av. Colombo 5790 – Maringá – PR – 87020-900

BRAZIL

(flavio, eeyamane, rcampiol)@din.uem.br

JOÃO BOSCO MANGUEIRA SOBRAL

Informatic and Statistics Department (INE)

Federal University of Santa Catarina (UFSC)

Campus Universitário Cx.P. 476 – Florianópolis – SC – 88040-900

BRAZIL

bosco@inf.ufsc.br

Abstract: - This paper presents ANE (Active Network Environment), a new research project. ANE is an execution environment for general purposes Active Networks. The project is based on observations about other similar existing projects in the same area. ANE is an auxiliary environment to the user to inject active programs in the network. The user communicates with the system using a simple and strong interface. He/she can develop the injected programs using any development tool for Java applications. The program injection happens when the user wishes; he/she has complete control over the injected programs. Many security elements were introduced in the system to give guaranties to the transported data and program code. The hosts in the path of an Active Network packet are monitored constantly by an Authentication Center.

Key-Words: - ANE, Active Networks, security, authentication.

1 Introduction

Active Networks are a new concept to the development of network applications, including some aspects of mobile agents, parallel programs, and network management.

 The study of some active projects in this area revealed some points we consider are possible to explore in a new environment, simple in some cases but very powerful in other aspects.

 In particular, we tried to construct an environment worried with many aspects of the security of network nodes and collected data by the injected programs.

2 Active Networks Projects Overview

There are a lot of active networks projects nowadays. ANE has some specific objectives we are trying to cover. Just to give an insight about them we will show some of these projects and some of their principal characteristics.

 The principal project we must talk about is Smart Packets [1]. It was developed to transport active programs through a network. Schwartz et al had a principal concern about the maximum size of the packet. It could not pass 1.5 kb as the packets can be fragmented if they travel through a network with a small maximum size packet. Other concern was about the necessity to attach one or more certificates to identify the sender of the packets. It is necessary for security reasons; but it introduces some problems with the size of attached information. The Smart Packets team was expecting some results from Ellison et al's work about simple public key certificates [2]. It has the idea to produce small certificates to be used where the size of attached information could be a problem.

 Generally the transport of active networks programs is done by ANEP (Active Network Encapsulation Protocol) [3], a specific protocol wrote in Java. ANEP is constructed for general use as it does not have fixed formats but they can be chosen as needed. It was projected to receive special information not directly related with the transported application but necessary to its functionality. So it can be inserted into the ANEP header to be easily transported.

 PLAN is a very interesting project [4]. Some of the principal characteristics we are interested are: a) PLAN programs are guaranteed to terminate as they cannot produce neither loops nor recursion; b) PLAN programs are divided in secure and non secure modules. Secure modules cannot harm network nodes so they can run without certificates. Non secure modules may modify nodes states so they need certificates to be recognized by the receivers; c) for security reasons, PLAN does not have ability to inter-packet communications.

 SANE [5] has a great contribution as it has a complex physical architecture proposition. SANE ensures that all programs must be signed to be executed.

 SANTS [6] is another interesting architecture. It permits dynamic configuration of the active environment like rights revocation of a specific job.

3 ANE Architecture

ANE is the active network manager of a new architecture in the development stage yet (Figure 1). The ANE purpose is to supply an environment where AN programs received from the network can be installed and executed. ANE communicates directly to the Network Layer Protocol (IP Protocol). ANE receives all the incoming AN packets that arrives in the local host directly from this protocol.

Fig. 1. ANE (Active Network Environment) Architecture.

 Associated with ANE, ANE Observer is a user interface. The user can do many tasks over the local Active Network environment using this interface: it’s possible to inject programs in the network addressing a specific host; the user receives the results of the final execution; he also can do some verification about the local ANE components:

· Watching the local AN programs;

· Terminating a specific program;

· Modifying ANE environmental parameters.

 ANE uses a special System Call to inject the programs in the network. It constructs a packet directly over the Network Layer. The packet is addressed to a specific host and it is routed in a path of intermediate hosts. This path can be implicit or explicit. An implicit path is indicated just addressing the last host. All the intermediate hosts will receive the packet. An explicit path is indicated when the AN Program is created by the Sender. In this case, the packet is sent to 1st. host of the path. The AN Program will send a new packet to the next host during its execution.

 ANE has reserved areas to install AN programs with memory and function libraries. The AN programs can use these resources to complete their different jobs. ANE executes AN programs as its threads; it has complete control over them.

4 Active Network Transport Protocol (ANTP)

Fig. 2. ANTP packet.

We have created a special protocol to transport the AN programs. ANTP (Active Network Transport Protocol) has important characteristics to the Active Network Environment. The ANTP packet may be seen in Figure 2.

 An ANTP packet has a maximum size of 64 KB. It has 2 principal components: a Header and an Active Network area.

 First, the Header has the Sender and Target’s hosts IP numbers.

 The kind of the message may be one of these possibilities:

· 1: AN Program to be executed (the packet brings an AN Program);

· 2: AN Program answer (Host N is sending back to Sender an AN Program with the final result of its execution);

· 3: Class file requisition (for implementation reasons);

· 4: Class File (for implementation reasons);

· 5: Terminate an AN Program (a command from the Sender to all hosts of the path).

 The greatest components of an ANTP packet are the AN Program (the active code) and the [INFORMATION]C field (resulting data collected by the AN Program). These components have variable size, which must be balanced with the other fields of the packet.

 Host N IP number indicates the last host that appended data to the [INFORMATION]C field.

 The Verification Capsule Number, AN Program Checksum (1 and 2) and [INFORMATION]C fields are part of the packet for security reasons.

5 ANE Architecture Security Issues
Our principal concern in the ANE project is security. Specifically, there are 2 great problems approached in ANE. The first one is related with the AN packets traffic. After that, there is a constant concern about authentication of all related components and the guaranties to the AN programs results.

 There are 2 different points of view related with an Active Network program: the Sender and the Receivers of an active packet in the path to the target host.

 The Sender has a concern about insecure lines his program will pass through and possible hostile hosts where the program will arrive and execute. In any one of these situations it is possible to apply modifications to the transported code and data. It is possible to modify collected data from past hosts and even to produce vandalism acts over the AN Program results.

 The Receiver has a great concern about receiving a code piece from the network to be executed in the local environment in a privileged situation. After all, Active Network Architectures work together the local network software by definition, and they have some resources that can be damaged if badly used.

 Our model consider a network with N hosts. All them are known between themselves. Each one has a set of public keys to authenticate itself among the others:

<i = 1 to N> {Ci(); Di()} (Host i

where CN() is the public key of Host N and DN() is its secret key. To this paper purposes, CN() and DN() are commutative (DN(CN(x)) = CN(DN(x))); a reference to C() and D() keys (without indices) indicates the Sender host.

 The establishment of these keys together ANTP protocol allows taking care of the following security issues.

5.1 Sender Host Authentication and AN Program Protection
The AN Program Sender is authenticated by 2 specific checksums in the ANTP packet. These checksums are ciphered with D(), the Sender secret key. When the packet arrives in a Receiver host, the local ANE apply C([CHK1]D) getting CHK1 and C([CHK2]D) getting CHK2. If both CHKs are equal to the calculated AN Program checksums, then we can be sure that the program was not modified and the Sender is authentic. Only the real one could use D() to produce [CHKN]D.

 The reason to use 2 checksums is very simple. The checksum has a limited size compared to the AN Program. In fact, the program can be very large (maybe 60 KB). But the checksum has a size about 4 bytes. This situation produces repeated checksums to different AN Programs. The only possibility to void this problem is to use checksums with the same size of the AN Programs.

 A 4 bytes checksum is not so strong in this situation. ANTP protocol rules that any AN Program has 2 checksums produced with different functions. Thus AN Program 1 produces CHK1 and CHK2. We could have a problem just if there is AN Program 2 that also produces CHK1 and CHK2. Probably it’s a very rare situation. If we consider that AN Program 2 must be a valid program, the chances we can find 2 AN Programs with equal CHK1 and CHK2 are practically null.

 An important consequence of this system is that an AN Program can’t send its own version after execution (composed by variables, buffers and other dynamic items) in some host of the network to the next host in the path. Only the original code, as the Sender injected it, can be transported by ANTP.

5.2 Previously Produced Data Protection

It is not possible to modify the AN Program in the ANTP packet, so the generated data addressed to the Sender must stay stored in the INFORMATION field. ANE uses a simple solution to void someone accesses these data. When the AN Program is finished, the actual host uses C() (the Sender public key) to cipher the collected data before append them to the ANTP packet. So, somebody different from the Sender cannot read the collected data. The INFORMATION field may be seen in Figure 3.

[INFORMATIONN]C has the following constitution:

[INFORMATIONN]C = [DATAN]C + [DATAN-1]C + ... + [DATA1]C

Fig. 3. INFORMATION format in ANTP packet.

 Unhappily, a hostile host can modify [INFORMATIONN]C voiding the data may be useful to the Sender, even if it cannot access its contents. There is the possibility to eliminate the data too. This is a problem to be researched in the future. Actually ANE architecture can detect the data modification but it cannot void it happens. The hosts in the path have total control over the packet after it arrives in their environments, so we hope that the rule will be all hosts acting between negotiated parameters. This is coherent with Lampson [8] when he referred to a minimum set of trusted elements (“trusted computing base”) as enough to construct a trust environment.

 Ciphering the INFORMATION field is not a complete secure solution. In the way all hosts in the path generate result data to the Sender, any [INFORMATIONN]C piece in the packet will be an example of ciphered information using the C() key. So it’s necessary to change the keys after some time (possible after the AN Program returns).

5.3 Monitoring the Hosts Activities in the Path

A hostile host can enter the circuit of Sender, intermediate hosts and final target, so we need to monitor all of them to identify in which moment it happened.

 The ANE Architecture reserves the possibility to use an external authentication center to verify this possibility. This new element can be seen in Figure 4.

 ANAC (Active Network Authentication Center) has an important function. To understand it, we need to introduce a new data item, the Verification Capsule. It is a control packet that all good hosts of the path must send to ANAC each time the AN Packet is sent to the next host. The Verification Capsule has the following composition:

· Verification Capsule Number;

· Original host identification;

· Digital signature from the original host;

· Hop number (N);

· INFORMATION size in the original host;

· INFORMATION Checksum;

· Optional partner information.

 In Figure 4, we may see 5 different steps: A) the Sender asks to ANAC the number of a new Verification Capsule; ANAC sends it to the Sender. After that, Host 1 receives the AN Program and it is executed; the program produces data. B) Host 1 sends the first Capsule to ANAC. The AN Packet is sent to Host 2; C) it repeats the process until the packet arrives the Host N, final target of the operation. D) Host N produces the last Capsule and sends the AN Packet back to the Sender. E) the Sender asks to ANAC all the produced Capsules; it verifies the integrity of all collected data and processes it according its necessity.

 ANE gives an interesting possibility to the users: they can choose some hosts in the path as “partners”. Partner hosts are special hosts that have the same privileges as the Sender. They are indicated to ANAC in the A step of figure 4. In the same function call that asks the new Verification Capsule Number, the Sender communicates ANAC about the partner hosts list.

 When the AN Packet arrives a partner host X, it can verify the prior collected information asking the secret key of the Sender to ANAC. If X is a member of the Sender partner list for this Verification Capsule then ANAC will send the Sender secret key ciphered with CX() to Host X. ANAC needs a certificate from X to confirm its condition. With D(), X can decipher any piece of INFORMATION. X can modify INFORMATION and even remove some of the collected data. All these events must be informed to ANAC in the optional partner information of the Verification Capsule with these items:

· INFORMATION piece number;

· Kind of operation (inspect, modify, remove);

· Number of the reason for this operation (not a standard number – it is combined among all the hosts – f. ex.: not necessary for this task, etc.).

6 ANE Implementation

ANE was developed in Java 1.4; it executes in Linux environment. AN Programs are Java objects from classes that extend the Threads class; they also implement the Serializable interface.

 5 principal threads compose ANE, as we may see in Figure 5:

· Observer:

· Communicates with ANE Observer;

· Executes the commands triggered by the user;

· Inserts the AN Programs in the Transmission Queue;

· Permits communication between ANE users.

· Sender:

· Removes the AN Program from the Transmission Queue and sends it to the Target host.

· Receiver:

· Receives the AN Packets and inserts them in the Treatment Wait Queue.

· Worker:

· Removes the An Packets from the Treatment Queue;

· Verifies the kind of message;

· If the message transports an AN Program, it is activated and inserted in the Active Programs Queue;

· Keeps BIND information to the AN Programs;

· Accepts requisitions from the AN Programs to access resources, send messages, etc.

· Watcher:

· Monitors the Active Programs Queue;

· Removes the finished programs from the execution queue;

· Inserts the AN Program and its data in the Transmission Queue (addressed to the next host in the path or to the Sender).

 To allow the identification of the AN Packet by the IP Protocol, we use the Router Alert option [7]. Its purpose is to indicate to the routers that the packet must be analyzed even if it is not directly addressed to the present host. Schwartz et. al. used the same resource [1]. In that project, a modification in the Router Alert option from IPv4 was done to implement the feature to analyze Active Network Packets in the protocol. So they achieved their Smart Packets architecture based in the ANEP protocol [3].

 A special System Call injects the AN Programs into the IP protocol. It was created only to this purpose.

 The AN objects are constructed by ANE using the Java new command. After that the new object is serialized and encapsulated in the ANTP packet (there is a possibility to cipher the AN Program with D() to guarantee that only the hosts of the circuit can execute the AN Program); so it is transmitted to the Target host. When the packet is received, ANE deserializes the object over the Active AN Programs Queue. The execution is initiated by calling the Run() method. ANE can work with classes only known dynamically due to the use of the Reflect option.

 The cells where the AN Programs stay when they are executing have a set of resources very useful to the environment:

· Incoming/outcoming lines to socket communication;

· Incoming/outcoming lines to AN Programs communication;

· Memory blocks to install libraries, tables, etc.

· State conditions manipulated by the Worker.

 AN Programs can interfere with a lot of state conditions of the host if they have rights to do it. The Worker has a special module to attend requisitions from AN Programs to guarantee that no right will be exceed. Even in the case the program has the rights to do an operation, the Worker will simulate it before the real execution to guarantee the final state will be valid.

7 Conclusion

ANE is a flexible and powerful Active Network architecture. Different from Smart Packets, ANE does not restrict the AN Program size. So, we can construct programs using more resources; they can have more features. As a negative point, specific applications that need little code are prejudiced.

 The security techniques used in the project can void that unauthorized principals may read the collected data. They also can detect modification data. The hosts in the path can discover if the transported code was modified after the injection of the AN Program. The user can know where the AN Program is at any moment consulting ANAC.

 The ANAC participation together some mechanisms from the ANTP protocol permit the Sender can discover if there were modifications in code or data, which host from the path did the modifications and when. The user of the Sender host may give permissions to a list of partner hosts. In this case, these hosts may read the content of the collected information. They can modify it and even remove it from the packet. All these operations must be logged.

 The Java language furnishes to AN Programs all the available resources from that platform. Some missing resource may be fixed by a specific library implementation. The user writes his applications following Java specifications. All resources the AN Program can use are intermediated by the Worker thread.

 ANE Observer is a simple and practical interface. The principal user difficulty is the development of the class that originates the active objects. The control over the injected programs is complete. At any moment, we can verify where the program is executing, the amount of collected data until that point, and through how many hosts it passed (including the identification of each one).

 Comparing with other works, ANE has some advantages:

· Different from Smart Packets, ANE does not restrict the size of the active programs. We consider that this option permits to develop more powerful programs. Maybe we can not develop specific applications where the program size is very important, but for the others the flexibility can be better;

· ANTP does not carry certificates. They are furnished in other steps to ANAC by application layer calls. ANAC can return private keys to the partners giving them permission to modify the collected data;

· ANEP is a general purpose protocol to transport active programs. ANTP is a specific protocol with security previsions but sufficient general to transport a great range of active applications;

· PLAN has guaranties of program termination. ANE does not have them yet but we are considering to include in the future some previsions about PCC (Proof-carrying Code) [9]. It can show to the receiver nodes that the injected programs are correct;

· Non secure modules of ANE active programs don’t modify the nodes states directly. The Worker verifies all potential problems that any requisition from the active programs can bring to the environment;

· Considering this guarantee, we opened the possibility to communications between active programs;

· We don’t work with signed programs like SANE. Before a program can run in any network node, there is the necessity to exchange public and private keys through ANAC. The keys are returned after the nodes inform their certificates. When a node has a key to access an active program, and/or its collected data so it has rights to receive the active program;

· Even the exigency of signed programs does not give a solution to the problem of hostile hosts. ANE does not have a solution either, but ANAC gives possibilities to find any problem that happens in the paths;

· The identification of ANE users and injected programs are done by PKI infrastructure;

· Based on development issues, we restricted the rights manipulation to just before the injection of the programs. After that, ANE does not modify the access rights of the users. But Observer can give any information to the user nodes so they can decide to finish any program;

· Different form SANTS, ANE works with static access control lists to verify the injected programs rights. In the future we can consider the possibility to change this option.

 ANE architecture is not done yet. We need more researches about security to give more guaranties to the AN packets. ANE also needs more tests. We need to develop some prototypes of AN Programs to attend different purposes. At least, the interface may be improved to furnish even more resources to the users.

Fig. 4. ANE Architecture using ANAC, an external authentication center.

Fig. 5. Internal ANE structure.

References:

[1] B. Schwartz et. al., “Smart Packets for Active Networks,” The Second IEEE Conference on Open Architectures and Network Programming – OpenArch’99, 1999.
[2] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen, “Simple Public Key Certificate,” http://world.std.com/~cme/ spki.txt, Jan. 2000.

[3] D. Scott Alexander et. al., “Active Network Encapsulation Protocol (ANEP),” http://www. cis.upenn.edu/~switchware/ANEP/, 1997
[4] M. Hicks and A. D. Keromytis, “A Secure PLAN,” First International Working Conference on Active Networks (IWAN’99), 1999.
[5] D. Scott Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith, “Security in Active Networks,” Secure Internet Programming: Issues in Distributed and Mobile Object Systems, Springer-Verlag Lecture Notes in Computer
 Science State-of-the-Art series, pp. 433 - 451, 1999.
[6] S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee, “Strong Security for Active Networks,” IEEE Openarch 2001, 2001.

[7] D. Katz, “IP Router Alert Option,” Request for Comments 2113, Network Working Group, 1997.

[8] B. W. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in Distributed Systems: Theory and Practice,” ACM Transactions on Computer Systems, vol. 10, no 4, 1992.

[9] G. C. Necula, and P. Lee, “Safe, Untrusted Agents using Proof-Carrying Code,” Lecture Notes in Computer Science – Special Issue on Mobile Agents, 1997.
Users Processes

send() receive()

Application Layer

Transport Layer

Network Layer

(IP Protocol)

Physical Layer

ANE

ANE Observer

Field�
Size

(Bytes)�
�
Header�
Until 273�
�
Host IP Number of Sender

Host IP Number of Target

Verification Capsule Number

Message kind

ANTP Packet Total Size

AN Program Name Size

AN Program Name

AN Program Size�
4

4

4

1

2

1

Until 255

2�
�
Active Network�
64K - Header�
�
AN Program

AN Program Checksum1 ([CHK1]D)

AN Program Checksum2 ([CHK2]D)

Host N IP Number

 INFORMATION Size

[INFORMATION]C�
?

4

4

4

2

?�
�

INFORMATION�
�
Actual INFORMATION (Host N)�
�
 Size

 Actual INFORMATION�
�
Previous INFORMATION (Host 1 - N-1)�
�
 Size� Previous INFORMATION�
�
 Host N-1 Identification

 INFORMATIONN-1 Size

 [INFORMATIONN-1]C

 INFORMATION Checksum�
�

B

C

D

A/E

Host 1

Host 2

Host N

Sender

ANAC

AN Pac

ANE

Received

AN Packet

Target Host

Treatment Queue

Transmission Queue

ANE Observer

OBSERVER

SENDER

WORKER

RECEIVER

WATCHER

IP

Active AN Programs

