Extension of the MACH-RT Kernel to Quality of Service Control in Multimedia Communications

�João AraUjo, Orlando Bernardo�Department of Systems and Computer Engineering � State University of Rio de Janeiro�Rua São Francisco Xavier, 524, Rio de Janeiro, 21945-970�Brazil�araujo@eng.uerj.br orlando@eng.uerj.br

Abstract: - The increase in the speed and power of the processors now available has given us the opportunity to use workstations and ordinary PCs to carry out multimedia communication. Unfortunately, this type of application requires real-time resources which current operating systems are not capable of providing. Multimedia applications need a reserve of resources. Quality of service (QoS) control will not be complete unless it takes account of the processor's limitations concerning the real-time requirements of multimedia. Therefore we have to provide functions that enable the operating system to ensure at least acceptable standards for the quality of service required by applications. In this project we suggest alterations to the scheduler of the kernel of a MACH-RT operating system. We also suggest an architecture that makes it possible to create and launch multimedia applications. These alterations allow the quality of service provided to the user to be controlled.

Key-words - Quality of Service, Multimedia Communication, Operating System, Real-time, MACH-RT

�
Introduction

The concept of QoS emerged mainly to describe the characteristics of communications systems. Use of multimedia communications, and therefore the continuous throughput of audio and video, has made it necessary to extend this concept to all the components in the communication chain. Let us take as an example a videoconferencing application that allows two user terminals to communicate through voice and images, interactively and in real time. In this case, it is not sufficient to carry out the QoS control in the communication network alone. We also have to ensure that the quality negotiated with the network is actually being supplied to the user by the operating system. Thus, the term QoS takes on a broader meaning [13]:

"Quality of service means all the qualitative and quantitative characteristics of a dedicated multimedia system that are necessary to ensure the functioning of an application."

Although QoS in a communications network is expressed chiefly in terms of throughput and error rate, QoS in an operating system is measured by the processor's availability for the application. The use of audio and video media makes it essential that the application's processes should run at specific moments because of their real-time characteristics. Operating systems such as UNIX cannot meet the requirements of this type of application for lack of real-time mechanisms. However, use of a real-time scheduler is detrimental to systems tasks, which can no longer run and are deferred when a real-time process is in operation.

We suggest an architecture based on the MACH-RT micro-kernel which makes it possible to guarantee QoS control. In this architecture the control and management of the QoS are handled by a server which looks at the QoS requests and, by analysing the load and availability of the processor, can decide whether or not to allow multimedia applications to be created. We also suggest changes in the functions of the MACH-RT scheduler to allow it to run this type of application.

Control Architecture

Our proposal is based on a micro-kernel architecture. In this type of architecture, the kernel takes charge only of essential system tasks, such as memory management and scheduling processor tasks.

The advantages of using micro-kernel architecture are its flexibility and ease of manipulation. Services can be added to the system very simply and rapidly because of its adaptability. On the other hand, one of the main arguments against the micro-kernel is its lack of performance. Communication between the several servers that make up the system requires much longer response times than those we find in monolithic kernels such as UNIX. However, with the development of Interprocess Communication (IPC) techniques and appropriate server designs, the difference is becoming increasingly smaller, and even insignificant [1,5,6].

In Fig.1 we can identify the main components of the proposed architecture: the user interface, the multimedia server and the kernel.

�EMBED Word.Picture.8���

Fig.� SEQ Figure * ARABIC �1� Architecture for QoS control.

The interface and multimedia resources

The role of the interface is to isolate the user from the details of each multimedia process. Its aim is therefore to provide a more user-friendly interface. Thus, for instance, the user might request the creation of a video process with normal quality, in colour, with 10 images per second and 160x120 pixels. The interface module takes charge of consulting a database to find out what the application will require in terms of system resources.

The database contains all the information relating to each multimedia process capable of running in the dedicated system. Thus the above request generates a request for several system resources. For example, a 10-ms process at a frequency of 10 times per second, a 20-ms process at a frequency of once per second, a throughput of 1 Mb/s and an error rate of 10-9, all with "best effort" discipline. Its role is therefore to supply the knowledge that the multimedia server needs to create multimedia tasks.

The interface therefore turns a high-level request into a processes and system resources request. Once the interface has all the information it requires, it asks the multimedia server to create multimedia tasks and reserve the necessary system resources.

�EMBED Word.Picture.8���

Fig.� SEQ Figure * ARABIC �2� Interface and the "bag" of multimedia resources.

In the proposed architecture, a multimedia application is represented by the "bag" of multimedia resources, made up of multimedia "threads" and by the system resources the application requires.

Each thread in a bag can only begin to run if all the other threads belonging to the same bag are able to run as well. In other words, the system must have sufficient resources for all the application's threads, otherwise no thread can start to run. The use of the bag concept for multimedia resources makes it easier for the multimedia server to decide whether to accept or refuse the creation of a multimedia application.

The bag of resources also facilitates the management of multimedia applications. If an application thread cannot keep running because of a QoS that is incompatible with its requirements, it is easy, if necessary, to shut down all the threads of the same application and free all the system resources belonging to the same bag.

Multimedia server

In our proposal, control of the system resources is carried out by a server which works outside the kernel. It will receive requests from bags of multimedia resources made by applications which want to run in each processor. The server will analyse the resources available, especially those of the processor and the memory, and decide whether the system is able to accept the request.

In order to carry out the analysis of available resources, the multimedia server receives requests for system resources and asks each server if it has available resources of the quality required. Thus, for example, the network management server may indicate whether it has a communication channel with the requested characteristics. If the answer is affirmative, it reserves the channel for the application. Each server responsible for each system resource analyses the request and gives its answer to the multimedia server.

�EMBED Word.Picture.8���

Fig.� SEQ Figure * ARABIC �3� Communication between the multimedia server and the other system servers.

Another of the multimedia server's tasks is to warn the application if the system can no longer guarantee the quality negotiated, or if the application is using more resources than it had reserved.

Contrary to what happens with present systems, each task of the multimedia application is analysed before it is allowed to access the processor's task queues. Thus, an a priori control of the processor load and of the allocation of resources is carried out.

The scheduler

Our aim is to enable multimedia applications to run on a workstation or PC without preventing the running of the system's usual tasks. If we simply use real-time priorities, there is the risk that the workstation will be turned into a multimedia-dedicated workstation, preventing it from running the simplest applications, such as word processing, or worse, by shutting down completely certain essential system tasks [7].

Thus, too heavy a real-time load on the machine which would disrupt the system would also disrupt the multimedia application. Similarly, too heavy a load may disrupt the running of certain low-priority interruptions, with disastrous consequences for both the system and the application itself.

If the application is accepted by the multimedia server, the kernel is informed and the scheduler divides up the processor time in such a way that the multimedia applications can go ahead without interrupting other tasks.

The scheduler divides up time in the following way: it works with two queues, the first devoted to multimedia processes and the second to other processes of the system (which may itself include several queues). The server decides what percentage of processor time will be reserved for multimedia applications and what percentage will be reserved for other applications, calling upon the EDF (Earliest Deadline First) algorithm on the one hand and on dynamic priorities on the other. During the period reserved for multimedia, the multimedia tasks have the highest priority in the system and are selected according to the EDF algorithm. During the other period, they will have low priority and will only run if there are no ordinary tasks ready to run.

The MACH-RT micro-kernel makes it possible to use several classes of scheduling at the same time in the same set of processors [11]. So we may have an EDF policy, a priorities policy and a real-time policy, for example, within the same system. Then we can add a new class of scheduling: the multimedia class. However, this new class is incompatible with the real-time class, because both use real time in the same way, except that the multimedia class cannot reserve all the system time for its processes.

Time-sharing

The scheduler divides processor time into two main types: multimedia time and normal time. While it is working with multimedia tasks, no shared application will be able to run unless there are no more multimedia tasks ready to run. The same applies to normal time, in which multimedia applications can run only if there are no shared tasks to run simultaneously.

The processor time is divided into reserved units, with a unit being the minimum time the scheduler may reserve for the application. Even so, the reservation of units does not prevent an application from using a shorter period of processor time. We may also define a period of time in which a minimum period will be reserved for shared applications. This standard will indicate the maximum slowdown that shared applications will undergo when the system is also working with multimedia applications. The standards are totally dependent on the machine and are selected in accordance with the performance of each processor.

Take, for instance, an analysis period of 100ms with a reserved time of 5ms. If we allow a maximum slowdown of 50% for shared applications, the scheduler will give at least 50ms to shared applications. The number of reserved units that will be engaged depends on how much time we want the scheduler to devote to multimedia applications. The following figure shows two possibilities for time-sharing. In the first, two units are reserved on each occasion, and in the second, only one unit. The choice of these parameters takes account of the "overhead" of changing tasks in the system and the performance of the processor.

The analysis period and the minimum reserved time for each processor are fed into the database so that the interface can make a request to the multimedia server with the correct reservation standards. Any change in these standards requires changes to be made in the database.

�EMBED Word.Picture.8���Fig.� SEQ Figure * ARABIC �4� Division of processor time.

Tests

For test the implementation of this architecture, we first created an application with only ordinary tasks (producer-consumer). With this application we reach 100% of CPU charge. Then, we created several multimedia tasks with 10% of CPU reservation each. The Fig. 5 shows the results. In this figure, we can see, for example, that in a situation of 3 multimedia tasks, the ordinary task has 65% of CPU time, with an overhead of 5%. It should be pointed out that with the old real-time scheduler, the multimedia task has 100% of CPU time and the ordinary tasks don’t run.

�EMBED Excel.Chart.8 \s���

Fig.5 Ordinary and multimedia tasks.

Conclusion

We suggest a medium for QoS control based on a server in an architecture composed of an operating system composed of micro-kernels. This server would check whether to allow multimedia applications to run, according to system resources. The proposed scheduler would actually work with two types of real-time application: multimedia applications and other applications, except that the latter would not use the EDF algorithm to do their scheduling.

We have done the implementation of this architecture on the MACH-RT micro-kernel with a FreeBSD file system. The algorithm used is flexible enough for the scheduler not to cause any significant slowdown in normal performance provided no multimedia applications are running. If the system has only multimedia applications, they will have the maximum processor time, except for the time taken by the usual kernel tasks.

It should be pointed out that at the current stage of implementation, the analysis period and reserved time cannot be altered without compilation of the kernel, and that dynamic negotiation of the QoS is not yet possible. We are currently working on both these elements. We are also working with the same architecture on a LINUX real-time kernel.

The number of multimedia applications and the quality that we guarantee them are doubtless lower than in an architecture where multimedia applications always have highest priority and where there are no admissibility checks. On the other hand, the advantage of our architecture compared to those types of architecture is that it can ensure the normal operation of the system and the operation of shared applications, even with a major load of multimedia applications.

References

[1]	B. N. Bershad. The Increasing Irrelevance of IPC Performance for Microkernel Operating Systems. Proceedings of the USENIX Workshops on Microkernels and Other Kernel Architectures: 27--28 April, 1992 Seattle, WA, USA, 1992, pp. 205-212.

[2]	D. L. Black. Scheduling and Resource Management Techniques for Multiprocessor. CMU Thesis CMU-CS-90-152, July 1990.

[3]	A. Danthine and O. Bonaventura. From Best Effort to Enhanced QoS. Technical Report S.A.R.T. 93/15/15, Project RACE 2060, Université de Liège, 1993.

[4]	A. Egan, D. Kutz, D. Mikulin, R. Melhem, and D. Moss. Fault-tolerant RT-Mach (FT-RT-Mach) and an application to real-time train control, Software Practice and Experience, Vol.29, No.4, 1999, pp. 379-395.

[5]	Michael Ginsberg, Robert V. Baron, Brian N. Bershad. Using the Mach Communication Primitives in X11. Proceedings of the Third USENIX Mach Conference, April 1993, pp. 103-110.

[6]	C. Maeda and B. N. Bershad. Networking Performances for Microkernels. Proceedings of the Third Workshop on Workstation Operating Systems(WWOS-3), April 1992, pp. 154-159.

[7]	J. Nieh, J. Hanko, J. Northcutt and G. Wall. SVR4UNIX Scheduler Unacceptable for Multimedia Applications. Fourth International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV ’93), Lancaster, November 1993, pp. 41-53.

[8]	C. Poellabauer, K. Schwan, and R. West. Lightweight Kernel/User Communication for Real-Time and Multimedia Applications. Proceedings of 11th International Workshop on Network and Operating System Support for Digital Audio and Video, June 2001, pp.

[9]	J. A. Ribeiro, Mécanismes du système d'exploitation pour le contrôle du multimédia, PhD. Thesis. Laboratoire Prism, Université de Versailles Sant-Quentin-en-Yvelines, Versailles, France, 1999.

[10] J. A. Ribeiro, Extension du Noyau du MACH-RT au Contrôle de la Qualité de Service dans les Communications Multimédia, Proccedings of 2éme Séminaire Franco-Brésilien sur les architectures des Systèmes Distribués : Architectures Multimédias Pour les Télécommunications (SFBSID ’97), pp. 173-182, Fortaleza, Ceará, Brasil, 1997.

[11]	H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: Towards Predictable Real-Time Systems. Proceedings of the USENIX 1990 Mach Workshop, October 1990, pp.73-82.

[12] J. Vogel, M. Mauve,W. Geyer, V. Hilt, and C. Kuhmunch, A Generic Late-Join Service for Distributed Interactive Media, Proceedings of the 8th International ACM Conference on Multimedia (Multimedia-00), 2000, pp. 259-268.

[13]	A. Vogel, B. Kerhervé, G. Bochmann and J. Gecsei, Distributed Multimedia and QoS: A Survey, IEEE Multimedia, Summer, 1995, pp. 10-19.

�PAGE \n° "'Page: 'n°'�'" ��

