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ABSTRACT

The importance and difficulty of the problem of ranking fuzzy numbers is pointed out.  Here

we consider approaches to the ranking of fuzzy numbers based upon the idea of associating with a

fuzzy number a scalar value, its valuation, and using this valuation to compare and order fuzzy

numbers.  Specifically we focus on expected value type valuations which are based upon the

transformation of a fuzzy subset into an associated probability distribution.  We develop a number

of families of parameterized valuation functions.  

1. Introduction

In many applications of fuzzy set theory, particularly in decision making, we often obtain a

measure of a course of action expressed as a fuzzy number, a fuzzy subset of the real line.  For

example the profit obtained by using the new XYZ process may be about $300,000.  Essentially

here we have some uncertainty as to the exact value of the profit.  As noted in the literature [1] this

is a kind of possibilistic uncertainty.  Often in these decision making environments we are faced

with the problem of selecting one from among a collection of alternative actions.  This selection

process may then require that we rank, order, fuzzy numbers.  While it is clear when considering

two pure numbers which is bigger or smaller the situation with respect to fuzzy numbers is not

always obvious.  It was early [2] in the development of the fuzzy set theory that the problem of

comparing fuzzy subsets of the real line was seen to be an important and difficult problem, see

Bortolan and Degani [3] for a review of some methods suggested to address this problem.  The

recent literature has also addressed this problem [4].  What seems to be clear is that there exists no

uniquely best method for comparing fuzzy numbers, the different methods satisfy different desirable

criteria.  While certain properties are necessary for any methodology that orders fuzzy numbers user

preferences account for a significant part of the performance of a preferred approach.  Our focus

here is to try to understand and suggest some methodologies for comparing fuzzy numbers.  Here
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we should note that parameterized classes of methods for ordering fuzzy numbers are particularly

useful in that they allow uses to train a methodology to satisfy the user.  Parameterized classes are

often suggested by a process in which we try to unify and connect already existing approaches.  In

this work we look at some valuation based methods for comparing fuzzy numbers.

2. Valuation Methods for Comparing Fuzzy Numbers

One general approach to the problem of comparison of fuzzy numbers is to associate with a

fuzzy number F some representative single value, Val(F), and compare the fuzzy subsets using

these single representative values. An example of an approach in this spirit, obtaining a unique value

as the proxy of a fuzzy subset, is the one introduced by Yager in [5] where he suggested using

Val(F) = Ave (Fα) dα
0

1

.

Here Fα = {x | F(x) ≥ α} is the α−level set of   and Ave(Fα) is the average of the elements in the

α−level set.  We note that if the underlying support, those elements having non-zero membership

grades is finite then

Ave(Fα) = 1
Card(Fα)

 x∑
x ∈  Fα

.

If F is a convex fuzzy subset then Fα is a closed interval Fα = [aα, bα].and in this  case

Ave(Fα) = bα + aα
2

.

If F is non-convex and non discrete then we can express Fα as a union of distinct intervals

Fα = [ai
α, bi

α]∪
i = 1

nα

and here

Ave (Fα) = 
(bαi  - aα

i ) (
bαi  + aα

i

2
)∑

i = 1

nα

(bαi  - aα
i ) ∑

i = 1

nα
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In the preceding in using Ave (Fα) dα
0

1

 it is assumed that F is a normal subset, there exists

at least one element with membership grade one.  If F is non-normal, but not empty, then Yager [5]

suggests using

Val(F) = 1
αmax

 Ave (Fα) dα
0

αmax

where αmax is the maximal membership grade in F.  In [4] Yager discusses a number of properties

associated with this approach.

In general any procedure used to obtain a unique characterizing value for a fuzzy subset F

should be based on a valuation, Val(F), that is a reflection of the information carried by the fuzzy

subset.  One primary consideration in this process is the fact that the membership grade, F(x),

associated with the quantity x is a measure of the weight or strength associated with the belief that x

is the actual value of the variable whose value is expressed by the fuzzy set F. This effectively

means that increasing the value of F(x* ) should make Val(F) move closer to x* .  If ρ is a distance

measure (metric) than

∂ρ (Val(F), x*)

∂F(x*)
 ≤ 0.

Another primary consideration is that each x should be handled in the same manner, that is

the formulation Val(F) should be symmetric regarding the elements of the underlying space.

While the choice of the actual function Val(F) is subjective, it depends upon the metric

chosen, it should satisfy a number of reasonable conditions.

If F is a fuzzy subset of the real line and Val(F) is a unique value representative of this fuzzy

subset then the following properties should be satisfied by Val(F):

1) Boundedness: Let b be the largest number for which F(x) > 0 and let a be the smallest

number for what F(x) > 0 then boundedness requires a ≤ Val(F) ≤ b.  We note a special case of this

occurs if F is such that F(x) = 0 for all x except x* in this case we require Val(F) = x*.

2) Monotonicity : Assume F and E are two fuzzy subsets such that F(x) = E(x) for all x

except a and b where b > a.  If F(b) > F(a) then Val(F) ≥ Val(E).  An alternative representation of
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this condition is the following.  Assume Val(E) = a.  Let F be fuzzy subset such that F(x) = E(x) for

all x ≠ b where F(b) > E(b)

1) if b ≥ a then Val(F) ≥ Val(E)

2) if b ≤ a then Val(F) ≤ Val(E)

In essence symmetry, boundedness and monotonicity implies that Val(F) is a kind averaging

operation.

An operation that is closely related to that of trying to evaluate fuzzy numbers is that of

defuzzification [6], a process that is used in the modeling of fuzzy control systems [7].  In a fuzzy

controller, where we use a collection of fuzzy rules to represent a complex relationship between

input and output variables, we end up with the output variable expressed as a fuzzy subset.  In order

to provide an input for the system being controlled we must defuzzify this output fuzzy subset to

obtain a unique crisp value as the input to the controller.  Here we see that we are also presented

with the problem of obtaining a representative value for a fuzzy subset.  In [6] Yager and Filev

investigated the issue of defuzzification in a very general way, in the following we shall draw upon

some ideas suggested there to investigate the problem to evaluating fuzzy numbers.

3. Probability-Expected Value Valuations

One view of the defuzzification process, discussed in [6], which can form the basis of the

valuation of fuzzy numbers involves a process in which the fuzzy subset is used to generate a

probability distribution.  This probability distribution is then used to obtain an expected value,

which can be used as the evaluation of the fuzzy subset.

Assume F is a fuzzy subset of the discrete finite subspace X of the real line.  In order to

obtain the valuation, Val(F), it is suggested that we proceed as follows:

1. From F obtain a probability distribution P on X where pj is the probability of xj.

2. Evaluate Val(F) as

Val(F) = ∑
j = 1

n

pj xj
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In order to use this method for evaluating a fuzzy subset we essentially become faced with

the problem of converting the fuzzy subset F into a probability distribution P. In obtaining P from F

we would expect the following criteria to be satisfied:

P - 1:  If F(x) > F(y) then P(x) ≥ P(y)

P - 2:  If F(x) = F(y) then P(x) = P(y)

P - 3:  If F(x) = 0 then P(x) = 0

An additional condition that may be desirable is that if ∑
x

F(x) = 1 then F(x) = P(x), we shall this

fidelity..

Condition P-2 is a reflection of the fact that no property other than the membership grade be

used to generate probability.  Condition P-3 is a reflection of interpreting F(x) = 0 as one in which

x is impossible.  This precludes simple translation of type transformations such as 

 p(xi) =F(xi) + 1n (1 - ∑jF(xj))

Condition P - 1 is a reflection of the basic relationship between p(x) and F(x), the larger 

F(x) the larger p(x).

We see that the satisfaction of conditions P-1 to P-3 along with the use of expected value

guarantees the required boundedness described earlier.  Let a and b be the smallest and largest

values for which F(x) ≠ 0.  From P-2, this implies p(x) = 0 for x < a and x > b.  Since

Val(F) = ∑
j = 1

n

pj xj then a ≤ Val(F) ≤ b.

Monotonicity is also guaranteed by these three conditions.  Consider two fuzzy subsets A

and B on the spaces X = {x1, ....., xn} and Y = {y1, ....., yn}  respectively.  Assume

A(xi) = B(yi) = ui and without loss of generality let ui ≥ uj if i > j.  Both these fuzzy sets generate

the same probability distribution pi, for i =1 to n, and from property P-1, if i > j.then pi ≥ pj.

Hence

Val(A) = ∑
j = 1

n

pj xj and Val(B) = ∑
j = 1

n

pj yj.

Let X and Y be such that

 xj = yj for j = 1 to n - 2

xn - 1 = a  and xn = b
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 yn - 1 = b and yn = a

where a > b.  In this case

Val(A) = ∑
j = 1

n - 2

xj pj + a pn - 1 + b pn

Val(B) = ∑
j = 1

n - 2

yj pj + b pn - 1 + a pn

Val(B) - Val(A) = (a - b) pn - (a-b) pn-1 = (a - b) (pn-pn-1)

Since a > b and pn > pn - 1 we see Val(B) ≥ Val(A), imposing monotonicity.

One approach to the generation of a probability distribution from a fuzzy subset involves a

simple normalization.  If F is a fuzzy subset over the finite space X we obtain a probability

distribution over X by calculating

P(xj) = 
F(xj)

F(xi)∑
i

We note that this satisfies the three desired conditions.  This approach doesn’t require F to

be a normal subset, that is Maxx[F(x)] can be less than one.  In addition this approach can be easily

extended to the case in which X is a continuous subinterval of the real line rather than a finite

subset.  In this case instead of generating a probability distribution P over X we obtain a probability

density function f over X such that f(x) = 
F(x)

F(x) dx
X

 from this we see that f(x) 
X

?

= 1

Using this formulation for the probability associated with a fuzzy subset, we get as the

expected value, i.e. the valuation of the fuzzy subset,

Val(F) = ∑
j = 1

n

xj pj = 

xjF(xj)∑
j = 1

n

F(xj)∑
j = 1

n

in the discrete case and in the continuous case

Val(F) = x f(x) dx
x∈ X

 = 

x F(x) dx
x∈ X

 F(x) dx
x∈ X
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Using some algebraic manipulations the formula P(xj) = 
F(xj)

F(xi)∑
i

 can be expressed in a

slightly different way which provides an interesting view of this normalization process.  In

particular we see that F(xj) can be expressed as 

P(xj) = 
F(xj)

F(xi)∑
i

 = F(xj) + 
F(xj)

F(xi)∑
i

  (1 - F(xi)∑
i

) .

From this expression we see that we that we obtain P(xj) by initially assigning the

membership grade as the probability, P(xj) = F(xj), and then proportionally modifying this based

upon how close the sum of the membership grades are to one.

Another approach to the association of a probability distribution with a fuzzy subset is based

upon the connection between a fuzzy subset, representing some imprecisely known value, and a

possibility distribution [8] and in turn the representation of the possibility distribution by a

Dempster-Shafer belief structure [9-11].

Assume that V is some allowable variable taking its value on the real line.  Assume our

knowledge of the value of this variable is expressed in terms of a fuzzy subset, V is large or V is

about 27.  Fundamentally in this situation there exists some uncertainty with respect to value of

this variable.  As suggested by Zadeh, this uncertainty induces a possibility distribution  ∏ over

the domain X of V such that for x ∈ X, ∏(x) = A(x) indicates the possibility that V is equal to the

value x.  That is, the possibility of x equals its membership grade.  In addition this possibility

distribution induces a possibility measure π where

π : 2x → [0,1]

such that

1. π({x}) = ∏(x).

2. π(D ∪ E) = Max [π(D), π(E)]

In [9-11] it is shown how a possibility measure can be obtained from a Dempster-Shafer

belief structure; it is the upper probability or plausibility measure.  Since the Dempster-Shafer belief

structure can be interpreted as the performance of a random experiment, the generation of random

sets, this framework can then be used to associate a probability distribution with a fuzzy set.
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We recall that a Dempster-Shafer belief structure defined on a set X consists of a collection

of subsets of X, Bi for  i = 1 to n, called the focal elements, and a mapping m

m : 2X → [0,1]

called a basic assignment function such that 

1. m(E) = 0 for E ≠ Βi       (m(Bi) ≥ 0)

2.  ∑
i = 1

n

m(Bi) = 1

One interpretation associated with this D-S belief structure involves the performance of a

random experiment to determine the value of some variable V.  This experiment is a compound

experiment.  In the first part of the experiment we select a subset of X by using a biased random

experiment in which m(Bi) is the probability that we select Bi.  In the second part of the experiment

we select as the value of V some element from the chosen subset, Bq.  It should be emphasized that

the exact mechanism used to select the element from Bq is not specified or known.  It has this

additional uncertainty.  One view of this second selection mechanism is as the performance of a

random experiment on the set Bq in which the probability distribution is unknown.

While for any x ∈ X the determination of its exact probability, p(x), is not possible in this

environment what is possible is the determination of its upper probability p*(x), p(x) ≤ p* (x),

where

p*(x) = ∑
Bi 
s.t.

x ∈  Bi

m(Bi).

Furthermore the associated upper probability measure, P*: 2X → [0,1],

P*(D) = ∑
Bi 
s.t.

Bi ∩ D ≠ ∅

m(Bi),

is a possibility measure.  As discussed in [12] this upper probability, possibility measure, can be

directly related to an inducing fuzzy subset.  Let A be a fuzzy subset of the space X = {x1, ....,

xn}.  We shall assume, without loss of generality, that the elements in X have been indexed such

that A(x1) ≤ A(x2) ≤ Α(x3) .... ≤ A(xn) ≤ 1.

Consider now a Dempster-Shafer belief structure with n focal elements, Bi for i = 1 to n, in
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which Bi = {xj|j = i to n} and where

m(B1) = A(x1)

m(Bi) = A(xi) - A(xi - 1)    for i = 2 to n.

Note: If we introduce a pseudo element x0 such that A(x0) = 0, then we can more succinctly

express this as m(Bi) = A(xi) - A(xi -1) for i  = 1 to n.

Using this particular belief structure we can find a unique correspondence between a belief

structure and a fuzzy subset.  In particular, under this structure p*(x) = A(x), the upper probability

is equal to the membership function of the associated fuzzy subset.  Thus the upper probability

measure is the possibility measure associated with the underlying fuzzy subset.  This connection

between a fuzzy subset and a Dempster-Shafer belief structure along with the random experiment

interpretation of the D-S belief structure suggests that the belief structure provides a fertile ground

for looking for a probability distribution to associate with a fuzzy set.  

Again, consider the belief structure.  Here we have a compound experiment:. first we select

a subset Bi of X where m(Bi) is the probability of selecting Bi and then we choose an element from

the selected subset.  Our inability to have a unique probability for the elements in X generated by the

belief structure, all we have are upper probabilities, is due to the fact that we have not prescribed the

method of selecting an element from the set obtained in the first part of the experiment.  By

introducing different methods of selecting the element from the chosen set we get different

uncertainty distributions on X.  One potential method for selecting the element is to perform a

probabilistic experiment on the set Bi.  In this case the probability p(xj) associated with the element

xj is

p(xj) = P(xj|Bi) P (Bi)∑
i = 1

n

.

Since P(Bi) = m(Bi), which is known, all we need is to decide upon P(xj|Bi).  Many possibilities

exist for this, each of which will lead to a different value for p(xj).  One possibility is to purely

randomly select the element from Bi.  In this case

P(xj|Bi) = 0     if xj ∉  Bi

P(xj|Bi) = 1ni
    if xj ∈ Β i,
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where ni is the number of elements in Bi.  Since Bi = {xj| j= i to n} we get ni = n + 1 - i. This

choice of P(xj|Bi) can be seen as an application of the principle of maximal entropy, we use the most

neutral distribution.

Using this approach it can be seen that

p(xj) = P(xj|Bi) P (Bi)∑
i = 1

n

 = 
P(Bi)

ni
∑

i = 1

j

.

Since xj ∉ Bi for i > j, then p(xj) - 
P(Bi)

n + 1 - i∑
i = 1

j

.  Furthermore, since P(Bi) = m(Bi) = A(xi) -

A(xi-1) we get

p(xj) = 
A(xi) - A(xi - 1)

n + 1 - i∑
i = 1

j

.

This formulation is discussed in [12].  A recursive formulation of this is

p(x1) = 
A(x1)

n

p(xj) = p(xj - 1) + 
A(xj) - A(xj - 1)

n + 1 -j
        for j = 2 to n

This probability distribution then provides one possible formulation for the probability

distribution associated with a a fuzzy set.  If we now calculate the expected value associated with

this probability distribution this leads to one possible valuation of the fuzzy set:

Val(A) = xj p(xj)∑
j = 1

n
 = xj∑

j = 1

n
 (

A(xi) - A(xi - 1)
n + 1 - i

)∑
i = 1

j

Rearranging terms we see that

Val(A) = ∑
i = 1

n
 (

(A(xi) - A(xi - 1))
n + 1 - i

 xj∑
j -= i

n

)

Recalling that Bi = {x j | j = i to n} we see that xj∑
j -= i

n

 is the sum of all the elements in Bi.

Furthermore since Card(Bi) = n + 1 - i, then 1
n + 1 - i

 xj∑
j -= i

n

 is the average value of the elements in

Bi.  Denoting this as Ave(Bi) we see that Val(A) = ∑
i = 1

n
 (A(xi) - A (xi - 1)) . Ave (Bi) .  Since

(A(xi) - A(xi - 1)) = P(Bi)  we see that

Val(A) = ∑
i = 1

n
 P(Bi) . Ave (Bi) .
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This formulation is reassuring in that the process we are using to obtain an element is to

select one of the Bi, with probability P(Bi), and then purely randomly select an element from this Bi

Given a subset Bi, the expected value associated with the random selection of an element from Bi is

the average of elements in Bi, thus the above formulation is clearly a reflection of this process, it is

the expected value of these values.

An additional view of this formula is possible which is very interesting.  We recall that the

α–level set of A, Aα, is defined as Aα = {x | A(x) ≤ α}.  With the elements in X indexed such that

A(xi) ≥ A(xj) for i > j, then we see that

Aα = {xj | j = i to n} for A(xi - 1) ≤ α ≤ A(xi).

That is, for α ∈ [ A(xi - 1), A(xi)] we have Aα = Βi.  

Consider now the formulation suggested by Yager in [5] for evaluating fuzzy subsets,

Val(A) = Ave (Aα) dα
0

1

.  Since as we have just shown Aα = Βi for α ∈ [A(x i - 1), A(xi - 1)] and

A(x0) = 0 and A(xn) = 1 we can express this as 

Val(A) = ∑
i = 1

n

( Ave (Bi) dα
A(xi-1)

A(xi)

) = ∑
i = 1

n

Ave(Bi) (A(xi) - A(xi - 1)).

Thus the approach suggested by Yager in [5] can be seen as being the same as using the expected

value of the elements in X where the probabilities are obtained by using the method above, that is

Ave (Aα) dα
0

1

 = p(xj) xj∑
j = 1

n

where p(xj) =
A(xi) - A(xi - 1)

n + 1 - i∑
i = 1

j

.

We recall that this result was obtained by considering a compound experiment, based upon

the Dempster - Shafer belief structure, in which we selected a subset Bq of X using a probabilistic

experiment in which P(Bi) = A(xi) - A(xi -1) where Bi = {xj | j = i to n} and then choose the

element from Bq purely randomly.

As we indicated, in the D-S model, the process used to select the element from the chosen

focal set Bq is not specified.  The decision to use a pure random selection is an arbitrary one.  In

[13, 14] Yager suggested, also based upon the D-S model, a different approach for the selection of
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the element from Bq, one which was shown to better capture the spirit of a possibility measure.

Yager suggests the following compound experiment for obtaining the probabilities of the elements

associated with a fuzzy subset.  The first part of this compound experiment is the same as in the

preceding, we introduce the n focal elements Bi = {xj | j = i to n} and using chance we select one of

these where P(Bi) = A(xi) - A(xi - 1).  Once having obtained a subset Bq, having cardinality

nq = n + 1 - q, we perform nq random experiments without  replacement on Bq.  It should be

noted that the selection of Bq leads to nq outcomes, each focal element leads to a different number

of outcomes.  The output of these random experiments are then used to determine the probability

associated with the elements, p(xj) = 
# times xj appears

# outcomes that appear
.  Using this approach Yager [13]

showed that the probability distribution is the simple normalization of the fuzzy subset A

p(xj) = 
A (xj)

A (xi)∑
i = 1

n

Thus we see that the simple normalization corresponds to a Dempster - Shafer experiment with a

different mechanism for selecting the elements from the chosen focal element.

The valuation function obtained under the simple normalization is 

Val(A) =∑
j =1

n A (xj) xj

A (xi)∑
i = 1

n

The following theorem provides an interesting alternative representation for this valuation.

Theorem: ∑
j =1

n A (xj) xj

A (xi)∑
i = 1

n
  =  

Aver (Bj) nj P(Bj)∑
j = 1

n

ni P(Bi)∑
i = 1

n

Proof: 1. First we consider the denominator; ni = n + 1 - i (the number of elements in Bi) and

p(Bi) = A(xi) - A(xi - 1). If we consider the term ∑
i = 1

n
P(Bi) ni = ∑

i = 1

n
(A(xi) - A(xi - 1)) ni we see

this can be expressed as nn F(xn) + (ni  - ni + 1) A (xi) - n1 A (x0)∑
i = 1

n - 1
.  Since nn = n + 1 - n = 1,

A(xo) = 0 and ni - ni + 1 = 1 we get that ∑
i = 1

n
P(Bi) ni = ∑

i = 1

n
A(xi).
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2. Let us now consider the numerator.  Consider the term Aver(Bj) nj P(Bj) since

Aver(Bj) = 1
nj

 Total(Bj) where Total(Bj) is the sum of the elements in Bj, Total(Bj) = ∑
i = j

n

xj, we

have Aver(Bj) nj P(Bj) = Total(Bj) P(Bj) and ∑
i = 1

n
Aver(Bj) nj P(Bj) = ∑

i = 1

n
Total(Bj) P(Bj) and

therefore the numerator is ∑
i = 1

n
(∑
i = j

n

xj) P(Bj).  Doing some algebraic manipulations we see that any

xk it gets multiplied by P (Bj)∑
j = 1

k

 thus numerator is

xk∑
k = 1

n
 ( P (Bj)∑

j = 1

k
) = xk∑

k = 1

n
 A (xk)  

4. A Generalized Approach

Assume A is a normal fuzzy subset of X = {x1, x2, ...... , xn} where the elements have

indexed such that A(xi) ≥ A(xj) if i > j.  Let Bj be a crisp subset of X defined by 

Bj = {xi | j ≤ i ≤ n}.

We shall call Bj a focal element of A and we note that Bj contains the n + 1 - j elements with the

highest membership grade in A.  In the preceding we have discussed two related approaches to the

valuation of the fuzzy subset A.  These approaches are based upon the calculation of expected

values using probabilities inspired by the Dempster-Shafer representation.  In this representation we

have assumed P(Bj) = A(xj) - A(xj - 1).  We shall denote these two valuation methods as Val1 and

Val2.  In Val1, the one originally introduced by Yager, we have

Val1(A) = Aver(Bj)∑
i = 1

n

⋅ P(Bj)

If we denote B = {B1, B2,  ......, Bn}, the set of the Bj, then Val1(A) is the expected value of the

average of the sets in B  under the preceding probability distribution.

On the other hand Val2(A) = 

Aver(Bj) nj P(Bj)∑
j = 1

n

∑
j = 1

n

 nj P(Bj)

, where nj  = n + 1 - j is the cardinality
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of Bj.  It is interesting to note that since Aver(Bj) = 
Sum (Bj)

nj
, where Sum(Bj) is the sum of the

values of the elements in Bj, then

Val2(A) = 

Sum (Bj) ⋅ P(Bj)∑
j = 1

n

nj  ∑
j = 1

n

P(Bj)

thus

Val2(A) = Expected Sum of the Bj
Expected number of elements in the Bj

whereas Val1(A) is the expected average of Bj.

Alternatively for a comparison with Val1(A) = Aver(Bj)∑
i = 1

n

⋅ P(Bj) we can express

Val2(A) = Aver(Bj)∑
i = 1

n

⋅ P(Bj) where P(Bj) = 
 nj P(Bj)

nj P(Bi)∑
j = 1

n .  Here we see both these approaches

can be seen as one in which we randomly select a focal element Bj from B and then use the average

of the selected set.  However, in each case the probability of selecting a given Bj is different.

We notice that the difference between the two probabilities is based upon a weighted average

of the cardinalities of the focal elements, P(Bj) = 
 nj P(Bj)

nj P(Bi)∑
j = 1

n .

We can view the difference between Val1 and Val2 as one in which Val2 puts more

emphasis on the focal elements which have more members.  Here it should be noted that since

nj = n + 1 - j we have nj > ni for j < i, thus Val2 puts more emphasis on the elements with lower

index.

Since the difference between the two approaches is essentially based upon the number of

elements in the associated focal element we can provide a more general expression of the valuation

function associated with a fuzzy subset.  

Let Bj be the focal elements associated with the fuzzy subset A, Bj is the set consisting of

the n + 1 - j elements with the highest membership grade.  Then a family of valuation functions

associated with A is
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ValF(A) = Aver (Bj) P(Bj)∑
j = 1

n

where

P(Bj) = 
F(nj)

F(∑
j = 1

n

nj) P(Bj)

   P(Bj)

where P(Bj) = A(xj) - A(xj - 1), the difference between the j and j - 1 largest membership grade in

A, nj = n + 1 - j is the cardinality of Bj and F is some non-negative function.

We see that if F(nj) = 1 for all j then P(Bj) = P(Bj)  and we recover Val1.  If F(nj) = nj 

then P(Bj) = P(Bj) and we recover Val2.  It appears natural to consider three classes of F:

1) F(nj) ≥ F(ni)    if nj > ni

2) F(nj) ≤ F(ni)    if nj > ni

3) F(nj) = F(ni)    for all ni and nj

In the first class we emphasize the focal elements with more members while in the second class we

emphasize those with less elements.  In class three no distinction is made based upon the number of

elements.

As we have already noted for Val2 we have F(nj) = nj  and hence this valuation puts more

emphasis on those focal elements with more members.  Another example of a transformation in this

first class, one that puts more emphasis on the focal elements with more members is

F(nj) = Min[K, nj ] where K ∈  [1, n].  Actually we see that if K = n then F(nj) = nj and if

K = 1 we get F(nj) = 1, Val1(A).  Thus this gives us a family which includes our two valuations

as special cases.  Using this formulation for F we get Val(A) = Aver (Bj) P(Bj)∑
j = 1

n

 with 

 P(Bj) = 
Min[K, nj] 

Min[K, nj∑
j = 1

n

]  P(Bj) 

  P(Bj) 

An example of a transformation of the second class, one that puts more emphasis on focal

elements with less elements is F(nj) = n - nj + 1.  In this case since nj = n + 1 - j we get F(nj) = j.

Thus in this case 
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 P(Bj) = 
j

j∑
j = 1

n

  P(Bj) 

  P(Bj) = 
j  P(Bj)

(n + 1) - A(xj)∑
j = 1

n  = 
j  P(Bj)

1 + A(xj)∑
j = 1

n

It is interesting to note that this case is equivalent to the calculation ValF(A) = ∑
j = 1

n

 xj P(xj) where 

P(xj) = 1
Q

 i
n + 1 - i∑

i = 1

j

 (A(xi) - A(xi - 1))

with  Q = (n + 1) - A∑
j = 1

n
(xj) .

An extreme example of a formulation that puts more emphasis on those sets with less

elements is one in which 

F(nj) = 0  if j < n

F(nn) = 1

Here we see that

P(Bj) = 0    for j < n

P(Bn) = 1

which results in ValF(A) = Ave(Bn).  This this selection gives as its valuation the element with the

largest membership grade.

5. Level Set View

As we have indicated earlier the focal elements, the Bi, are closely related to the level sets of

the fuzzy subset A.  In particular the α-level sets of a fuzzy subset A, Aα = {x | A(x) ≤ α}, are

related to the Bi in the following way

Aα = Βi    for A(xi - 1) ≤ α ≤ A(xi),

the Bi are essentially the level sets of A.  From this relationship we showed that

Val1(A) = Aver(Aα) dα
0

1

In addition we can also express Val2 using the level set representation

17



Val2(A) = 

Aver(Aα) Card(Aα) dα
0

1

Card(Aα) dα
0

1

These formulations lead us to consider a generalization in which we have

ValF(A) = 

Aver(Aα) F(Card(Aα)) dα
0

1

F(Card(Aα)) dα
0

1

We note that for Val1, F(card(Aα)) = 1 while for Val2 F(card(Aα)) = Card(Aα).

Again F can be classified into three classes

∂ F (x)

∂ x
   ≥ 0 for all x  (monotone)

∂ F (x)

∂ x
   ≤ 0 for all x  (anti-monotone)

∂ F (x)

∂ x
   = 0 for all x  (neutral)

Since the level sets are such that Aα1 ⊂ Α α2 for α1 > α2 then Card(Αα1) ≤ Card(Aα) for

α1 > α2.  If F is monotone it tends to put additional emphasis on the elements with high

cardinality, the lower level sets, while F anti-monotone puts more emphasis on the high level sets.

Here we see that since for Val2, F is monotone it puts more emphasis on the lower level sets.  That

is Val2 tends to move the valuation toward average of lower level sets. Figure #1 helps illustrate the

situation.  Here we see that if b is the value obtained using Val1 then that using Val2, a, will be to

the left as the lower α−level sets are skewed in this direction.
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a b

A

Figure 1.  Illustration of effect of F

Since the elements with higher membership grade those in the higher α−level sets, are more

strongly in A it may be desirable to use a non-monotone F, for example F(nj ) = 1
nj

.or

F(nj) = n + 1 - nj

Note:  If Aα is continuous then we use the measure of Aα, µ(Aα), instead of the cardinality of

Aα.

Throughout the preceding we have explicitly assumed that the fuzzy subsets being evaluated

are normal, there exists at least one x such that(A(x)) = 1.  If A is not normal, Maxx(A(x)) = αmax

< 1, then we are faced with a problem, we can’t calculate Aver(Αα) for α > αmax.  However, this

general formulation allows us to handle this problem in the same manner as was done in [5].  In

particular we define

ValF(A) =

Aver(Aα) F(Card(Aα)) dα
0

αmax

F(Card(Aα)) dα
0

αmax

where αmax is the maximum membership grade in Aα.

The general formulation introduced in the preceding can be used to inspire another class of

valuation functions.  Since the cardinality of the level sets have a unique relationship with respect to

the value of the level, Card(Aα1) ≥ Card(Aα2) for α1< α2, it would appear natural to try to bypass

the use of cardinality and express a class of valuation functions directly in terms of α.  Here we
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introduce a class of valuation functions, denoted ValphaF(A), and defined 

Valphaf(A) = 

Aver(Aα) f(α) dα
0

1

f(α) dα
0

1

where f: [0,1] → [0,1].

If A is symmetric, where Aver(Aα) = a then Valphaf(A) = a.  A number of special cases of f

are worth introducing.  If f(α) = k ≠ 0 for all α, then we get

Valphaf(A) = Aver(Aα) dα
0

1

 = Val1(A)

Another interesting class of these evaluations occurs when f(α) = αq for q ≥ 0. In this case we get

Valphaf(A) = 

Aver(Aα) αq dα
0

1

αq dα
0

1

Here we notice that for q > 0 we are placing more emphasis on higher α level sets, the larger the q

the more emphasis.  We see that if q = 1 we get

Valphaf(A) = 

Aver(Aα) α dα
0

1

α dα
0

1
  = 2 Aver(Aα) α dα

0

1

If q -> ∞, we see that this gives us the mean of maxima as the expected value

Valphaf(A) = Aver(A1)

the average of elements is the one level set.

Complementary to this is the case when f(α) = (1 − α)q, again we assume q ≥ 0, here
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Valphaf(A) = 

Aver(Aα) (1 - α)q dα
0

1

(1 - α)q dα
0

1

Here we place more emphasis on the lower α-level sets with smaller α, the larger the q the more the

emphasis.  If q = 1 we get 

Valphaf(A) = 

Aver(Aα) (1 - α) dα
0

1

(1 - α) dα
0

1
 = 

Aver(Aα) (1 - α) dα
0

1

1
2

Valphaf(A) = 2[ Aver(Aα)  dα
0

1

 - Aver(Aα) α dα
0

1

]

Valphaf(A) = 2 Val1(A) - 2 Aver(Aα) α dα
0

1

If q → ∞, then Valphaf(A) → Aver(A0), the average of the zero level set, the average of the

space underlying A.  Here we have discarded all information contained in A in evaluating it. 

It should be noted that the valuation, Valphaf(A)  can be generalized to work in situations in

which the fuzzy subset A being evaluated is subnormal.  In particular if Maxx[A(x)] = αmax then

we define

Valphaf(A) = 

Aver(Aα) f(α) dα
0

αmax

f(α) dα
0

αmax
.

In the following we shall look at the form of Valphaf(A) for the special case when A is a

trapezoidal type fuzzy set (see fig. 2)
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a b c d

Figure 2.  Trapezoidal Fuzzy Sets

For the trapezoidal fuzzy subset A the membership function is

A(x) = 0 for x<a

A(x) = x - a
b - a

for a ≤ x ≤ b

A(x) = 1 for b ≤ x< c

A(x) = d - x
d - c

for c ≤ x < d

A(x) = 0 for  x ≥ d

Using Valphaf we get Valphaf(A) = 

Aver(Aα) f(α) dα
0

1

f(α) dα
0

1
.  

The trapezoidal type of fuzzy sets have a very special form for the level sets, Aα = [uα, vα], the

level sets are closed intervals.  From this we easily get that Aver(Aα) = uα + vα
2

.  Thus in this case

Valphaf(A) = 

1
2

(uα + vα) f(α) dα
0

1

f(α) dα
0

1

The end points of the level sets, the uα  and vα can be easily obtained from the definition of

of the fuzzy subset A.  In particular from α = uα - a
b - a

 we get uα = (b - a) α + a and from α =  d - vα
d - c

we get vα = d - (d - c) α.  Using this we see
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Valphaf(A) = 

1
2

 [(b - a) α - (d - c) α + a + d] f(α) dα
0

1

f(α )
0

1

dα

This can be simplified to 

Valphaf(A) = 

1
2

 [(b + c) α + (1 - α)  (a + d)] f(α) dα
0

1

f(α )
0

1

dα

Let us first consider the case in which f(α) = 1, this is Val1(A).  In this case

Valphaf(A) =Val1(A) = 1
2

 [(b + c) α + (1 - α)  (a + d)]  dα
0

1

 Val1  = 1
2

(1
2

(b + c) α2 - 1
2

 (1 - α)2(a + d)|0

1

Val1 = 1
4

 (a+ b + c + d),

here we see that it is the average of four crucial points.

Let us now consider the class of valuations in which f(α) = αq.  Here we get

 Valphaf(A) = 1
2

 

 [(b + c) α + (1 - α)  (a + d)] αq dα
0

1

αq 
0

1

dα

In this case since 

αq 
0

1

dα = 1
q + 1

we get

Valphaf(A) = 
q + 1

2
  [(b + c) α + (1 - α)  (a + d)] αq dα

0

1
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Valphaf(A) = 
q + 1

2
   [(b + c) α(q + 1) + (αq  - α(q + 1))  (a + d)]  dα

0

1

Valphaf(A) =  1
2

 (
q + 1
q + 2

 (b + c) + 1
q + 2

 (a + d)) 

Valphaf(A) =  1
2

 1
(q + 2)

 [(a + b + c + a) + q (b + c) ].

Again some special cases are worth pointing out:

• If q = 0, we get as before, Valphaf(A) = 1
4

 (a + b + c + d)

• If q = 1, then Valphaf(A) =  1
3

 (b + c) +  1
6

(a + d)

• If q → ∞, then Valphaf(A) =  1
2

 (b + c)

Let us now consider the class of valuations in which f(x) = (1 - α)q. Here we get

Valphaf(A) = 1
2

 

 [(b + c) α + (1 - α)  (a + d)] (1 - α)q dα
0

1

(1 - α)q 
0

1

dα

In this case since (1 - α)q 
0

1

dα = 1
q + 1

 we get 

Valphaf(A) = 
q + 1

2
   [(b + c) α  (1 - α)q + (1 - α)(q + 1)  (a + d)]  dα

0

1

After some algebraic manipulations we 

Valphaf(A) = 
q + 1

2
 (

(a + d)
(q + 2)

  +  
(b + c)

(q + 2) (q + 1)
)

Valphaf(A) = 1
2

 (
q + 1
q + 2

 (a + d)+ 1
q + 2

 (b + c))

Valphaf(A) = 1
2 

 1
(q + 2)

 ((a + b + c + d) + q (a + d))

Some special cases are worth pointing out:

• If q = 0, then  as in the preceding, Valphaf(A) = 1
4

 (a + b + c + d)

• If q = 1, then Valphaf(A) =  1
3

 (a + d) +  1
6

 (b + c) 

• If q → ∞, then Valphaf(A) =  1
2

  (a + d)

The valuation functions for trapezoidal membership functions just introduced, 

F1 =  1
2

 (
q + 1
q + 2

 (b + c) + 1
q + 2

 (a + d))         q ∈ [0, ∈ ∞]
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and

F2 = 1
2

 (
q + 1
q + 2

 (a + d)+ 1
q + 2

 (b + c))        q ∈ [0, ∈ ∞]

provide interesting classes of valuation functions.  Let us denote

b + c
2

 = M (mean of maxima)

a + d
2

 = S (mean of support).

and then we can express these as

F1 = 
q + 1
q + 2

 M + 1
q + 2

  S       q ∈ [0, ∈ ∞ ]

F2 = 
q + 1
q + 2

 M + 1
q + 2

  S       q ∈ [0, ∈ ∞ ]

Note: If the the fuzzy number A is symmetric, M = S = K, then for all q F1 = F2 = K

Note:  As q goes from zero to infinity F1 goes from 1
2

 (M + S) to M. 

Note:  As q goes from zero to infinity F2 goes from  1
2

 (M + S) to S.

A unification of these two valuation functions can be made.  First we note

that 
q + 1
q + 2

 +  1
q + 2

  = 1 and as q goes from zero to infinitely 
q + 1
q + 2

 goes from 0.5 to 1. Let us

denote

F =  β M + (1 - β) S

where β ∈  [0, 1].  Then we see that for β ∈  [0, 0.5] we are getting F2 where β = 0 corresponds to

q = ∞ and β = 0.5 corresponds to q = 0 while for β ∈  [0.5, 1] we are getting F1 where β = 1

corresponds to q = ∞ and β = 0.5 corresponds to q = 0   Thus we have essentially provided, in this

case of trapezoidal fuzzy numbers, a valuation function which is a weighted average of the Mean of

the Maxima and Mean of the Support.

Conclusion

We have suggested a number of approaches to be used for the problem of comparing and

ordering.  These approaches are based upon the use of valuation procedures which convert a fuzzy

number into a scalar value.  
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