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Abstract C. Transmission Line Delay Elements
Different methods to build integrated resonators and fre- As the frequency of oscillation increases, on-chip transmis-
guency tuning elements are reviewed. Two new figures ofion lines can be used as delay-lines to form a distributed
merit are defined and used to compare voltage-controlledscillator [24]. The delay-based oscillators have better phase
oscillators (VCO) reported by various authors. It is showrsensitivities since the passive delay elements introduce very
that bipolar and CMOS VCOs can achieve similar perfordittle noise for a given delay forming a low noise ring oscilla-
mances. tor [25].

Introduction Frequency Tuning

A large number of integrated resonator-based oscillators Frequency tuning is an essential feature in voltage-con-
have been reported during the last few years [1]-[19]. Differtrolled oscillators. In discrete VCOs, frequency tuning is
ent designers have tried to optimize different parametengsually achieved by using higD-abrupt or hyper-abrupt
using different circuit design techniques. These oscillatortuning diodes that can easily provi@,,/Cmin ratios in
have been implemented using different process technologiexcess of 4 which is enough for tuning over an octave.
(such as CMOS, BiCMOS and bipolar), operating at differ-Unfortunately, such devices are not available in standard
ent frequencies (ranging from 900MHz [3][4] to 10GHz CMOS and bipolar process technologies and the designer is
[19]). The power dissipation, tuning range and phase noidanited to a few sub-optimal options. In this section, we will
vary significantly from one design to another. It is thereforeeview some of these tuning methods.
difficult to compare these designs unless a few parameteys

independent figures of merit are defined to compare different: Junction Diode Tuning

The capacitance of a junction diode is a nonlinear function

oscillators. of the reverse bias given by [26]
In the next two sections, various resonators and tuning
methods used in these designs will be reviewed. Next two Co
different figures of merit are defined that will be used to Ci(Viey) = \'/ (1)
compare the performance of various oscillators. + i‘dﬂ
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Resonators whereCjq is the junction capacitance with zero voltage drop

High-frequency resonators can be built in many different, . oo diod@,e, is the reverse bias on the junctigg.is
ways. Here we will focus on resonators that require n’c}q}

> e junction built-in potential anth is an exponent deter-
explicit external component and are based on the eleme . ! : :
thaF\)t can be built in stgndard IC process technologies: mined by the doping profile of the junction. (For an abrupt
: junction m=0.5 while for a hyper-abrupt junction it is close

A. Spiral On-Chip inductors to 2).

To this date, spiral on-chip inductors are the most reliable, Quality factor of the varactor capacitance is given by
repeatable resonator available in standard IC process tech- 1
nologies. Recently, a lot of attention has been paid to accu- Quaractor = @

rate modeling [20], improvement [22] and optimization rsCjw

[21][23] of this kind of inductors. On-chip spiral inductors whererg is the series ohmic resistance of the vara@prs

are reasonably repeatable and robust to changes in exteritfa junction capacitance amdlis the angular frequency of
parameters, however, they suffer from high loss (low qualitynterest. As can be seen from (2), the quality factor of a var-
factor, Q). actor decreases with increasing frequency. The quality factor
. of on-chip spiral inductors used to design oscillators is usu-
B.  Wirebond Inductors ally below 10. Therefore, for lower frequencies the quality

Bond wires can be used as inductors with reasonably higlctor of the resonator will be limited by the inductor. How-
Q [5][10][14]. Although they offer good quality factors, they eyer, as the frequency increases, the quality factor of the
are more vulnerable to mechanical vibrations and have quegqyctors improve while the quality factor of the varactor
tionable repeatability due to the inaccuracy of wire bondingyegrades and will become an important factor. Because of

process. At higher frequencies, shorter lengths of wirebonghs effect, it is imperative to minimize the series resistance
is used, thereby further degrading the tolerance of the totak the varactor.

inductor. Also the varactd® becomes the limiting factor at

. . 3 . . In CMOS process technologies, junction varactors are usu-
higher frequencies, cance_llng the effect of higher md_uct_or Qally implemented using diode between thevell and thep+

USrain-source implants as shown in Figure la. The series
resistance of this structure can be minimized usirg
patches surrounded loy rings as shown in Figure 1b [7].

tors will have very limited use in the future.
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n-well
Figure 2 Accumulation mode varactor.
b)

el in ann-well similar to a PMOS transistor, bt regions are
. used in place of thp+ drain and source as shown in Figure
2.
The capacitance of the accumulation varactor is controlled
by the dc voltage between the gate terminal andnthe

regions. For gate voltages above the flatband voltage, the
Figure 1Ann-well p+ varactor in CMOS technology. extra majority carriers are attacked to the channel and there-
fore the capacitance will approach the gate capacitance given
In bipolar and BICMOS processes, the varactor is usuallpy (4). For small gate voltages, the total capacitance will
implemented using the base-collector junction of a BJT. Thi§onsist of the series combination of gate capacitance and the
junction has a higher breakdown voltage which is desirabléepletion capacitance below the gate. In principle, the dc
to achieve higher tuning range. Also extra care is taken tgate voltage controls treenter of the chargef the accumu-
minimize the collector series resistance which directlylated charge in the channel.
affects the series resistance of the varactor. Unfortunately,Extra care should be taken when using this in varactor in
the doping profile of the base-collector junction is not veryVCO design, as the quality factor of the capacitor depends
abrupt and the exponentin (1) is usually close to 0.3. This on the control voltage, having its lowest value in the middle
small exponent, together with the small supply voltage sigof the tuning range. Unfortunately, middle of the tuning
nificantly limits the Cp,5,/Cin ratio and thereby the tuning range is where the oscillator will be operating nominally and
range.[13] also has the highest VCO gain. Therefore, the phase noise
E MOS Capacitors will be the worst in the middle of the band. This frequency

. . dependence of phase noise is an undesired characteristic,
The gate channel capacitance of MOS transistors can al

be used for frequency tuning [10][13][14]. If the drain and%%mpllcatlng the.de3|gn. )

source are connected together, the transistor will never entgr. ~ Binary Weighted Capacitor Network

the pinch-off region and will operate between cut-off, sub- In many applications, the desired output frequency range

threshold and ohmic regions. Therefore, the capacitance hag the VCO is just a few percent of the center frequency.

a minimum given by the gate-source (and gate-drain) overladowever, due to process variations and inexact modeling, the

capacitancd,e., output frequency of the VCO cannot be accurately predicted

and a larger margin is required. If the center frequency of the

Crnin= 2fWL,,Coyx (3 oscillator could somehow be adjusted once in the beginning

whereW is the width of the devicé,y, is the gate-drain and of the operation, the effective tuning range can be made
gate-source overlag,, is the gate capacitance per unit areamuch smaller and thereby improve the phase noise perfor-
andf is a fitting parameter to account for the fringing fields.mance.
As the gate voltage is raised above zero, channel inversionA binary weighted array of switches and capacitor, similar
occurs and the capacitance will increase to its maximurtP that shown in Figure 3 can be used to adjust to center fre-
value quency in the beginning of the operation and making the var-
_ actor a smaller fraction of the tank capacitance. However,
Cinax = 2W(TLoy + L) Cox @ there are limitations on the size of the switches. Wie of
for Vgg in excess of the threshold voltage. In this kind ofswitches cannot be made very small size as its series resis-
capacitor, the change in the capacitance with voltage is reléance will introduce excess loss and hence degrade the qual-
tively steep. This is generally undesirable, as it results in @y factor of the tank. At the same time making the switch too
large sensitivity to the control voltage. Extra circuitry can bdarge will increase the drain junction capacitor affecting the
design to lower the slope, linearizing the transfer function. total tank capacitance.

F Accumulation Mode Capacitor H. Interpolative VCO
An alternative metal-oxide-semiconductor structure known In this tuning method, the outputs of two resonators with
as accumulation mode varactor can be made in the standaslightly different resonant frequencies are added with differ-
CMOS process technology [27][28]. This structure is madent weights and fed back to themselves, as shown in Figure 4
[1][18]. If gain A, is set to zero, the oscillator will oscillate at



cation. Therefore, we normalize phase noisekTPg,
wherePg,,is the total dc power dissipated in the VCO. This
way our figure of merit will also be a representative of the
efficiency of the VCO in turning dc power to ac power.
Based on the above discussion we defioeer-frequency-

L normalizedfigure of merit as
fO
[Ek— %q = L{for}
4 2

E E E h|2€lh| lh|

Psup
whereL{fqs is the measured phase noise at the offset fre-
Figure 3 Binary weighted array of capacitors.

quencyfy in units of dBc/Hz. Note th&FN is unitless and
g1 >

Active Circuit

PEN = 10|og[ (6)

4C

can be shown using dBs. A larger PFN corresponds to a bet-
ter oscillator.

Although this quantity captures many of the important
parameters in the design of a VCO, it completely ignores its
tuning range. Generally, the relative turning range is the
quantity of interest. It is defined as the ratio ofthg~fnax
fmin t0 the center frequency. Since doubling the tuning
range means making th&,,,,/Cnin ratio 4 times larger, we
should further normaliz€FN is by (ftungfo)z. We therefore
definepower-frequency-tuning-normalizdédure of merit as

kT [gw_qu “L{fy}
Psup foff D:| off

These two figures of merit are calculated and plotted in Fig-
ure 5a and b, respectively.

As can be seen from Figure 5, the designs using wirebond
inductors achieve slightly bettBf-Ns andPFTNs than those
using spiral inductors. Also, designs using bipolar and
CMOS process technologies are not much different in terms
of theirPFN andPFTN This can be explained by the gener-
ally higher power dissipation in bipolar implementation
w, and ifA, is zero the output will be aty. If w; andw, are which cancels their phase noise advantage over CMOS
close, for non-zerd, andA, the oscillator will oscillate ata designs.
frequency betweew; andw, determined by the ratio of the
gains. The necessary condition for single-mode oscillation is

(1]

A

™

PFTN = 10|og[
Control +

Ay

Figure 4 Interpolating VCO.

Conclusion
Currently available options to build integrated resonators
and tuning elements were reviewed. Two new figures of
merit, PFN and PFTN, were defined. It was shown that
CMOS and bipolar VCOs have essentially similar normal-
ized performances.

®)

whereQ is the quality factor of the resonators.

Unfortunately, in this tuning scheme the phase noise has a
strong dependence on the frequency, being the worst in thd
middle of the tuning range. This in turn results in a direct
trade-off between phase noise and tuning range.

[2]
Comparison of Different Oscillators

It is a well known fact that phase noise of an oscillator
measured at an offsgjs from a carrier afg is proportional
to f02 and inversely proportional ﬁgﬁz [29], if all the other [3]
parameters are kept constant. Also phase noise is inversely
proportional to the power dissipated in the resistive part of
the tank. We would like to define a unitless quantity as the)
figure of merit. Therefore, we dividefo(foﬁ)2 by the phase
noise. Also we would like to normalize the phase noise to the
resistive noise energlgl, divided by the power dissipated in
the tank. However, the power dissipated in the resistive part
of the tank cannot be easily calculated from the VCO specifi-
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