
Evolutionary Algorithms for Program Module Assignment
by Multicriteria Approach

JERZY BALICKI, ZYGMUNT KITOWSKI
The Polish Naval Academy,

Œmidowicza St., 81-919 Gdynia,
POLAND

Abstract - Design problems of distributed computer system are formulated as multiobjective combinatorial
optimization tasks, which can be solved by modern heuristic techniques. Software task allocations in multiple
computer systems can decrease the total time of program execution by taking advantage of the specific
efficiencies of some computers or advantage of load computer states. In a network of workstations or personal
computers, two or more program modules may execute concurrently for various periods. A program module is
a collection of procedures or subroutines, or could be data files. In the paper, an evolutionary algorithm is
applied as a novel approach to a multicriteria assigning of program modules in distributed computer systems.
For quality evaluation of module assignment two criteria are used: a total cost of program processing and a
performance of a distributed computer system. Then an evolutionary algorithm for finding Pareto-optimal
solutions is proposed. Some results of numerical simulations are presented.

Key-Words: - Multiobjective optimization, distributed computer systems, evolutionary algorithms
CSCC'99 Multiconference Proceedings: - Pages: 7571-7576

1. Introduction
In a distributed computer system, another way for
the minimization of the total time of program
execution is to change the computers for module
processing. So, the computer with a power floating
point unit can be dedicated for performing tasks
with several numerical procedures, and the graphic
workstation is suitable for program modules with
animation and chart processing. Operating and
configurations of several distributed computer
systems are very complex. For an assessment of
their quality several parameters can be used. If there
are considered the set of feasible alternatives of the
system structure, we have to solve the instance of
multicriteria optimization problem [1].

Genetic algorithms, evolutionary strategies and
evolutionary algorithms are the alternative
approaches to the other heuristic optimization
methods such, as simulated annealing, tabu search,
Hopfield models of neural networks, or Lagrangean
relaxation. It compels a discussion about the quality
of solutions obtained by one of above optimization
techniques. A crucial result of studies is using
evolutionary algorithms for solving multiobjective
optimization problems. There are differences
between genetic algorithms, evolutionary algorithms
and evolutionary strategies.

Evolutionary algorithms develop genetic
algorithms for solving optimization problems by

another chromosome representation, more complex
operators, and a specific knowledge related with the
optimization problem [7].

2. A model of parallel processing
The standard problem of program module allocations
is a question how to find the allocation of program
modules to minimize the program execution cost. An
objective of optimization is the time of program
performing, too. Another measure is the amount of
computer resource using.

Fig. 1. Allocation of program modules in the distributed
computer system with 4 computers

On the fig. 1 an example of distributed program
in a computer network with 4 computers is
presented. The program was divided on 8 modules

1

2

54

63

87

M1, M2,..., M8. Module M4 is assigned to a computer
with the module M5 . It is reasonable solution, if
between above pairs of modules great number of
interactions is required.

A program module can be activated several times
during the program lifetime. The process (operation)
is the processing of one activated program module.
With the module can be associated some processes.
In results, a set of program modules
{M1,...,Mm,...,MM} is mapped to a set of processes
{m1,...,mv,...,mV} A process can be split on the
threats, this parallel processing technique for speed
up is not considered.

Fig. 2. The performing of a parallel program consisted
of 4 modules by 3 computers

On the fig. 2, the performing of a parallel
program consisted of 4 modules is presented. The
modules are allocated on 3 computers P1, P2 and P3.
The module M1 starts (the process m1) and finishes
(the process m3) the whole parallel program on the
computer P1. Moreover, the module M1 (the
operation m2) calls the module M2 (the operation m6)
on the computer P2. Then, the module M1 (the
operation m2) transfers its activity to the module M4

(the operation m4) on the computer P3. Afterwards,
the module M4 (the operation m4) returns an activity
to the module M1 (the process m2). In above scheme
the processing of parallel program is carried out.

3. Computer allocations
Let us assume that the process mv can be executed
on several sorts of computers taken from the set

},...,,...,{ 1 Jj πππ=Π . Computers are able to

operate in the fixed nodes included to the set
},,...,,...,{ 1 Ii wwwW = only. On the fig. 2, there

are 3 nodes 321 ,, www . In the node w1, the

computer P1 is situated. P1 is taken from the set

},...,,...,{ 1 Jj πππ=Π . Computers, which are

located in different nodes, can represent the same
sort. Above assumption gives the possibilities of
consideration, which computer sort is more
convenient in any node.

Each pair of computers situated in nodes can
communicate to support performing of program
module interactions. Furthermore, in each node one
and only one computer should be allocated. It implies
the computer allocation constraints, as follows:

.,11
1

Iix
J

j
ij ==∑

=

,π
 (1)

where







=
 the toassigned is if

case,other in the
iwj

ijx
ππ 1

0

A vector, as below, can describe an allocation of
computers:

T
IJIjIijJj xxxxxxxx],...,,...,,...,,...,,...,,...,[11111
ππππππππ = ,(2)

4. Process allocation constraints
An optimal process allocation should be found for
parallel program execution time minimization. A
vector can determine process allocation, as follows:

Tm
VI

m
vi

m
I

m
i

mm xxxxxx],...,,...,,...,,...,[1111= , (3)

where





=
,1

0
iwvmm

vix
 toassigned ismodule if

case,other in the

Because each process is allocated to one node,
then the process allocation constraints are
formulated, as below:

.,11
1

Vvx
I

i

m
vi ==∑

=

 , (4)

Now, the following vector can write the allocation
of operations to computers:

T
IJIjIijJj

m
VI

m
vi

m
I

m
i

m

xxxxxxx

xxxxxx

],...,,...,,...,,...,,...,,...,

,,...,,...,,...,,...,[

11111

1111
πππππππ

=
(5)

Constraints (1), (4) reduce the number of
allocations x from a=2I(V+J) to b=I VJ I . Let us
consider the simplest distributed computer system
with 2 computers (I=2). The number of allocations
of operations to 2 computers with respect operation
number V and computer sorts J=2 is shown in the

m1 m2 m3

m4 m5

t

t

P3

P1

m6

m7

m8

t

P2

table I. Grey cells denote numbers of allocations,
which can be compared to find an optimal
allocation in 1 hour. For evaluation, a modeling
computer comparing 1 pair of allocations during
1 ns [10-9 s] was taken. If the number of processes
is not smaller than 100, then it is impossible to find
optimal allocation by comparing all combinations
during reasonable time.

Tab. I. A number of allocations of operations to 2
computers with respect operation number V

Number of allocationsV

a b
2 64 16

10 1.678*107 4,096*103

100 2.571*1061 5,07*1030

1000 1.971*10603 1.286*10301

5. Resource constraints
Each computer has resources needed for a program
performing. A program module reserves an
operational memory during its processing. Also the
reserved memory size by a module can be changed
during a module execution, then a maximal amount
can be estimated. Another resource is a size of hard
discs. If modules share the other sort of memories (a
tape memory, the ZIP memory etc.), then the
capacities of memories can not be exceeded. In the
distributed computer system are available the
following memories z1,...,zr,...,zR. Computers can be
equipped in different amounts of memories. So, djr

denotes the capacity of memory zr in the computer
πj . The value djr is nonnegative and limited. We
assume that the operation mv reserves cvr units of
memory zr and holds it during a program execution.
The value cvr is nonnegative and limited, too.

The memory limit in any computer assigned to
the ith node can not be exceeded, what is written, as
bellows:

.,1,2,1,
11

Rrixdxc
J

j
ijjr

V

v

m
vivr ==≤ ∑∑

==

π (6)

A program module can require the subroutine
library, a specific software environment, a heavy
duty printer, a high resolution monitor, or the other
components. Let k1,...,ks,...,kS denote required
components of computers. We assume that the
following component coefficients are given:





=
case,other in the

,component computer requiresif

0

1' sv
vs

km
c





=
case,other in the

,component thehas if

0
' sj
js

kV
d

 π

Operational requirements related with the access
to computer components can be formulated, as below
constraints:

.,1,2,1,'

1

' Ssixdxc ijjs

V

v

m
vivs ==≤ ∑∑

=

π (7)

6. Problem formulation
The first criterion used for an allocation evaluation
is the cost of parallel program performing, which
can be calculated, as below:

,,

)(

3
1 1 1

1 1 1
1

Mm
-iu,

m
vi

V

v=

V

u=

I

i=
vu

ij
m
vi

J

j

V

v=

I

i=
vj

xxx

xxtxF

B∈+

+=

∑∑∑

∑∑∑
=

τ

π

 (8)

where
tvj - the cost of performing the module mv by

the computer πj,
τvj - the cost of communications between the

module mv and the module mu,
- the set {0, 1}.

A cost of computers can be calculated according
to the following formula:

.)(
1 1

2
ππ κ ij

I

i

J

j
j x=xF ∑∑

= =
 (9)

where κj represents the cost of computer πj.

There are several classes of multiobjective
optimal solutions related with the preferences for
criteria. If criteria are ordered from the most
important criterion to the least important criterion,
then a hierarchical solution can be found.

If all criteria have the same priority, then Pareto-
optimal solutions can be considered. Because of the
great number of Pareto-optimal solutions some
reducing techniques can be used. For instance, the
compromise solutions with the “democracy”
parameter p equal 1, 2 or ∞ may be extracted from
Pareto set. Moreover, an additional criterion can be
used.

Let consider the case of multiobjective
optimization problem (X, F, P) for finding the Pareto-
optimal solutions, which are some allocations of
program modules and computer types in a distributed

computer system. This allocation of program
modules to processors can be called the operational
structure of processing in distributed computer
system. It seems to be very representative for the
other combinatorial problems as it was shown in
[1]. In this problem some denotations are used, as
follows:

The relationship P for finding Pareto-optimal
trajectories is a subset of Y×Y, where Y=F(X). If

a∈Y , b∈Y, and Nnba nn ,1, =≤ , then the pair of

evaluations (a,b)∈P. Above definition of the Pareto
relationship respects the minimization of all criteria.
For Pareto-optimal trajectory x*∈X there is no
trajectory a∈X such, that (F(a),F(x*))∈P.

For solving above optimization problem, three
techniques were used. A poor genetic algorithm, an
evolutionary algorithm and an evolutionary strategy
used similar operators, but there are several
differences between them, what cause obtained
solutions distinguish in final result. Now, we try to
evaluate the quality of above algorithms

7. Genetic algorithm
For solving multiobjective optimization problem
(12) with the considered three criteria an
evolutionary algorithm can be used. Genetic
algorithms are applied for solving several
optimization problems. Holland [5] developed this
approach and its theoretical foundation. Rosenberg

noticed abilities of GA for development many criteria
[9].

Schaffer [10] considered GA for solving
multiobjective optimization problems by a vector
evaluated genetic algorithm VEGA. VEGA is an
extension of system GENESIS prepared by
Grefenstete [4]. VEGA uses dividing of the
population on N subpopulations, where N are the
number of criteria. For each nth subpopulation the
criterion Fn is a fitness function. But, selection,
crossoverring, and mutation are carried out for whole
population. This method for fitness evaluation has
the disadvantage related with the discrimination of
Pareto solutions situated in the interior of the Pareto
frontier. Indeed, mainly lexicographic solutions are
preferred.

Fourmann considered selection with using
hierarchical tournaments, where two randomly
chosen solutions are compared, and a hierarchical
solution is a winner in this competition, and it is
included to a mating pool of potential parents [2]. A
selection probability is calculated fot the most
important goal. A random choice is carried out twice
according to the roulette rule. But similarly to VEGA
approach, hierarchical tournaments for target
preferences set a’priori supports the solution
migration towards lexicographical solutions.

Another Fourmann’s selection is based on random
choice of a goal for comparison of a taken solutions
[2]. Selection probabilities are the same or it can be
related with the chosen goal for the other version of
selection.

To avoid the discrimination of the interior Pareto
solutions Goldberg introduced the ranking system for
non-dominated individuals, which is similar to the
ranking system for one function [3]. If there are some
feasible solutions in a population, then the Pareto-

1) X - a feasible solutions set

|{)(2 JVIx +∈= BX

;,1,1
1

Vvx
I

i

m
vi ==∑

=
 ;,1,1

1

Iix
J

j
ij ==∑

=

π

;,1,,1,
11

RrIixdxc
J

j
ijjr

V

v

m
vivr ==≤ ∑∑

==

π

SsIixdxc ijjs

V

v

m
vivs ,1,,1,'

1

' ==≤ ∑∑
=

π
}.

2) F - a vector quality criterion

2 : RX →F , (10)

where F(x) = [F1(x), F2(x)] T for x∈X

F1(x) is calculated by (8),

F2(x) is calculated by (9).

3) P - the Pareto relationship [1]

Fig. 3. Ranking of solution evaluation in a population

F2

F1

1

1

1

2

2

2

2

3

3

4

optimal individuals are sought, and they get the rank
1 (fig. 3). Then they are temporary eliminated from
the population. From reduced population the new
Pareto-optimal trajectories are found and get the
rank 2. This procedure with increasing of the rank is
repeated until the set of feasible solutions will be
exhausted. That is why, all nondominated solutions
have the same rank and the same fitness to
reproduction.

If x is non-feasible, it gets the fitness function
value f(x)=1. If x is feasible, then the fitness
function value is calculated, as below:

1)()(++−= Lxrxf . (11)

where r(x) denotes the rank of a feasible solution.

A genetic algorithm for multicriteria optimi-
zation problem can be presented on the fig. 4.

Fig. 4. Genetic algorithm for multicriteria problems

Genetic algorithm (GA) in a standard form from
fig. 4 is an general approach for solving a wide class
of multiobjective optimization problems. If there is
software implementation of GA for one criterion
optimization problems, then the ranking procedure
has to be added before fitness calculation. Binary
vectors represent solutions. So, for several
combinatorial tasks GA is suitable for applying.
Especially, GA can solve the problem (10).

Simulation results confirmed, that GA is capable for
finding suboptimal in Pareto sense solutions, but the
quality of them was non-satisfying. Several
experiments with changing the parameters of GA
such, as the crossover probability, the mutation
probability or selection rules were done.

On the fig. 5, a level of convergence to Pareto
frontier is shown for different values of the crossover
probability pc. The best performance was done for
the reasonable value pc=0.2. The size of population
L=10 and the mutation probability pm=0.05. The
number of binary decision variables (the length of
chromosome) is 24. A search space has 224 elements
for this instance.

The level of convergence to Pareto frontier is a
closeness measure the nondominated points obtained
by GA to the Pareto points {P1, P2,..., PU}. For this
sort of optimization problem it can be taken, as
follows:

.|| 1
1

1 u

U

u
u APS −= ∑

=
 (12)

where A1u is a best cost of program performing found
by GA for the cost of distributed computer system
A2u= P2u.

8. Evolutionary algorithm
An overview of evolutionary algorithms for
multiobjective optimization problems is presented by
Fonseca and Flaming [2]. In an evolutionary
algorithm (EA) some specific knowledge about
considered optimization problem is respected. So,
GA can be used for solving the wide class of
problems, and EA is rather focused on the special
case of task, only. But usually, results are much

BEGIN
t:=0, set the size of population L
randomly generate initial population P(t)
calculate ranks r(x) and fitnesses)(),(txxf P∈
finish:=FALSE
WHILE NOT finish DO
BEGIN /* new population */

t:= t+1, ∅=:)(tP
calculate selection probabilities)1(),(−∈ txxps P
FOR L/2 DO
BEGIN /* reproduction cycle */

♦ proportional selection of a potential
parent pair (a,b) from the population P(t-
1)

♥ simple crossoverring of a parent pair (a,b)
with assumed crossover probability pc

♦ bit mutation of an offspring pair (a',b')
with assumed mutation probability pm

♦ P(t):=P(t)∪(a',b'}
END
calculate ranks r(x) and fitnesses)(),(txxf P∈

IF (P(t) converges OR t≥Tmax) THEN finish:=TRUE
END

70

80

90

100

110

120

130

140

0 30 60 90 120 150

1
0,8
0,6
0,2
0,05
0

S

Fig. 5. Finding crossover probability pc

better.
A logical scheme is similar to GA, but initial

population is constructed to individuals satisfy the

constraints ;,1,1
1

Vvx
I

i

m
vi ==∑

=
 Iix

J

j
ij ,1,1

1

==∑
=

π

by introducing integer representation, as follows:

),,...,,...,,,...,,...,(11
πππ
Ji

m
V

m
v

m XXXXXXX = (13)

where 1== m
vi

m
v xiX for and 1== ππ

iji xjX for

Moreover, IX m
v ≤<0 and JX i ≤< π0 . A

simple crossover operator is used, but a bit mutation
is substituted by the random exchange of integer
value by another from a feasible discrete set. If
solution is non-feasible, then the penalty is
calculated. The fitness for a non-feasible solution is
equal to the difference between maximal penalty in
population The fitness for a feasible solution is
created by adding maximal penalty in population to
a term 1)(++− Lxr . This evolutionary algorithm

gives much better results than GA (fig. 6).

9. Evolutionary strategy
For solving optimization problems an evolutionary
strategy was proposed and developed by
Rechenberg [8] and Schweffel [11]. An extension of
evolutionary strategies on multi-objective
optimization was introduced by Kursawe [6].

Chromosome in evolutionary strategies consists
of two main parts, as follows:

),,(σxX = (14)

where
x - decision variable vector,
σ - deviation standard vector for x.

The diagram of evolutionary strategy EA is
shown in a version (µ+λ) [7]. A strategic mutation of
chromosome changes a value of decision variable xm

by randomly chosen number ∆xm representing value
of random variable with a normal distribution
N(0,σm).

10. Concluding remarks
Techniques for solving related multiobjective
optimization problems can use the proposed the
evolutionary algorithm or evolutionary strategy “with
plus”. The presented approach seems to be very
elastic for adaptation in the other cases.

In the evolutionary algorithm some new mutation
operators can be introduced to satisfy some
constraints. Moreover, evolutionary strategies can be
compared to evolutionary algorithms. A canonical
genetic algorithm gave worse results, because it is
more general and it do not use the knowledge related
with the specific optimization problem.

References:
[1] J. Balicki, Z. Kitowski, A. Stateczny: Extended
Hopfield Model of Neural Networks for Combinatorial
Multiobjective Optimization Problems, Proc. of 1998 IEEE
World Congress on Computational Intelligence - IJCNN,
Anchorage, May 1998, vol. 2, pp. 1646-1651.
[2] C.M. Fonseca, P.J. Fleming, An overview of
evolutionary algorithms in multiobjective optimization,
Evolutionary Computation, vol. 3, No. 1, 1995, pp.1-16.
[3] D.E. Goldberg, R. Lingle, Alleles, loci, and the
traveling salesman problem, in Proc. of the Int. Conf. on
Genetic Algorithms and Their Applications, Carnegie
Mellon University, Pitsburg, 1985, pp. 154-159.
[4] J.J. Grefenstette, GENESIS: A system for using genetic
search procedures. Proc. of Int. Conf. on Genetic
Algorithms and Their Applications, 1984, 161-165.
[5] J. H. Holland, Adaptation in natural and artificial
systems, University of Michigan Press, Ann Arbor, 1975.
[6] E. Kursawe, A variant of evolution strategies for vector
optimization. In H.-P. Schwefel, R. Manner (Eds.): Parallel
problem solving from nature, 1st Workschop, Lecture Notes
in Computer Science, Vol. 496, 1991, pp. 193-197.
[7] Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolutionary Programs, Springer Verlag, 1996
[8] I. Rechenberg, Evolutionstrategie. Optimie-rung
technischer systems nach printzipien der biologischen
evolution. Frommann-Holtzboog Verlag, Stuttgart 1973.
[9] R.S. Rosenberg, Simulation of genetic populations with
biochemical properties. I. The Model, Mathematical
Biosciences, vol. 7, pp. 223-257.
[10] J.D. Schaffer, Multiple objective optimization with vec-
tor evaluated genetic algorithm, Proc. Int. Conf. on Genetic
Algorithms and Their Applications, 1985, pp. 93-100.
[11] H.P. Schwefel: Evolution and optimum seeking. John
Wiley&Sons, Chichester 1995.

9,4
4,9 2,5 2

0

10

20

30

40

50

60

70

80

90

100

0 25 50 75 100 125 150 175 200

S [%]

t
Fig. 6. Minimization of the the average level of

convergence to Pareto frontier by EA

