
Adaptability in Concurrent Object Oriented Languages

FERNANDO SÁNCHEZ, JUAN MANUEL MURILLO, JUAN HERNÁNDEZ, ALBERTO GÓMEZ
Department of Computer Science

University of Extremadura
Avda. Universidad s/n, 10071, Cáceres

SPAIN

Abstract: - Adaptability and composability have become two of the most important research areas in concurrent
object-oriented systems in recent years. Whereas adaptability tries to cope with system evolution by
adding/replacing components, composability tries to facilitate system building by placing together different
components or pieces of software. Nevertheless, at the present time, concurrent object-oriented languages do not
provide enough support for the development of true adaptable and composable software because either i) the
different aspects that appear in these systems, synchronization and behavior, are mixed in the same component or,
ii) if they are properly separated in different components, once these components are woven, the resulting
executable piece of software is too rigid to be adapted or reconfigured at run-time. In this paper, we distinguish
different levels of synchronization and present two models mainly thought for a clear and consistent separation of
the synchronization aspect from the behavioral aspect. Whereas both models allow behavioral code to be written
in a standard language like Java, they provide a different language for the specification of synchronization
components and a third language for the specification of the composition rules between the synchronization and
behavioral components. This composition language allows synchronization policies to be added, replaced or
reconfigured at run time, which is the main contribution of the proposed models. The techniques here presented
have been satisfactorily integrated in Java.

Key-words: Concurrent object-oriented programming, adaptability, composability, synchronization, coordination.
CSCC99: Proceedings: pp.7511-7516

1 Introduction
Frequently, large and complex systems have to cope
with a continuous change of requirements during their
life. Consequently, these systems tend to grow and
change after they have been developed. In order to
adapt to changing requirements, the demand has risen
for adaptable software. This research area has been
named the adaptability of software, which can be
defined as the ability to deal with new/changing
requirements with minimum effort. In this definition,
the meaning of effort must be understood as the
number of modules that are created or modified when
changes in the requirements are necessary.

Adaptability is not a new area of interest. The
different programming methodologies proposed so far
have had, among their main goals, the development of
easily maintainable and modifiable software.

In this sense, object-oriented programming has
proposed abstraction mechanisms such as classes,
objects, interfaces, methods (procedures, functions)

etc. However, many systems have properties that
don't necessarily align with the object-oriented
system's functional components. Synchronization
constraints, persistence, distribution protocols,
replication, coordination, real-time constraints, etc.,
are aspects of a system's behavior that tend to cut-
across groups of functional components.
Consequently, programming them using current
object-oriented languages results in spreading aspect
code through many components, and the source code
becomes a tangled mess of instructions for different
purposes (See A1-A4, C1-C4 in Fig. 1).

Under this situation, dependencies between
components are increased, opportunities for
programming errors are introduced, and components
become less reusable. In short, the source code is
difficult to reason about, to develop and to evolve.
The introduction of new requirements affecting a
single aspect may involve the modification of other
aspects, thus expanding the number of components

that must be changed or modified. And this situation is
clearly against the definition of adaptability given
before1.

COMPONENTS

A
SP

E
C

T
S

C1 C2 C3 Cn

A1

A2

A3

Am

m

A4

C4

...

....

Fig.1 Relationship between aspects and components

In our research group we are working with the
aspect of synchronization. In this paper, several levels
of synchronization will be distinguished and two
models to cope with them will be briefly presented.

2 Separation of Aspects
Nowadays, the separation of concerns or aspects from
functional code has been recognized as an effective
approach for increasing adaptability, that is, for solving
the problem stated in the previous section [1, 4, 12].
This ideal situation is illustrated by Cn and Am in fig. 1.

During last years, synchronization has been one of
the most analyzed aspects in order to be separated from
functional code.

The synchronization of an object can be seen at
three different levels of abstraction that cover all the
possible spectrum of object interactions (fig. 2).

• Firstly, the level of synchronization among
internal threads, that is, mutual exclusion among
threads, what will be the next thread to be executed,
etc.
• Secondly, the level of synchronization for
incoming messages according to the current state of

1 Inheritance anomaly [9] is a good example of the stated

problem in adaptability: a change in the synchronization
aspect may affect both the behavior aspect and data
aspects.

the object, that is, if, when a message arrives, it
can be executed, rejected or delayed.
• Finally, the level of synchronization between
different objects or multi-object coordination can
be distinguished.

Synchronization
between internal

threads of an object

Concurrency control level:
synchronization for
incoming messages

Coordination level:
Synchronization
between several active
objects

Fig. 2 Different levels of synchronization

In the following we refer to synchronization for
the two internal levels in fig. 2 and coordination for
the external one.

In the last few years there have been several
proposals trying to separate the synchronization [2, 7]
and coordination [3] aspects from the basic behavior
of the object. A number of proposals deserve special
mention which under the name of aspect-oriented
programming (AOP) try to express each of a system’s
aspects in a separate and natural form that will be
automatically woven to form an executable code
using automatic tools [5].

All of these proposals have obtained a certain
degree of success, and they have proposed different
programming techniques in order to separate both
concerns. But once these concerns are composed,
what is the nature of the resulting entity after the
composition process? Is it flexible enough to allow
the synchronization and coordination aspects to be
adapted not only at compile time but also at run time?
That is, is it flexible enough for adding, replacing or
reconfiguring synchronization and coordination
components at run time? To our knowledge, the
answer is no. Our contention is that this feature is
very important in critical control systems where, due
to unexpected environment changes, urgent and not
pre-established decisions must be taken at run time.
From security and economic point of views, it is not

admissible to stop the application, adapt it to the new
environment and re-run it.

In the next section we show two models we have
developed: the disguises model [13] to cope with the
synchronization aspect and coordinated roles [10] to
deal with the coordination aspect.

In both models the aspect of distribution is taken
into account. [7, 6] are recent proposals for separating
the aspect of distribution, but again run time
adaptability is not addressed.

3 Our approach
Fig. 3 shows the main difference between our approach
and others.

In conventional object-oriented languages, the
functional aspect is mixed with any other aspect both at
compile time and at run time. This explains why
software developers have to deal with numerous
revisions during the product's lifetime when new
requirements appear.

This rigidity is less severe by using the aspect-
oriented approach proposed in [5], where the
interference between different aspects is reduced at
compile time. This approach allows system developers
to concentrate their attention on the design of
individual aspects and to minimize the interdependence
between aspects. But now the problem is moved from
compile to run time because of the nature of the woven
product.

What we have addressed in our approach is to
maintain aspects separated both at compile time and at
run time.

Object orientation
Aspect oriented
programming Our approach

Compile time

Run time

Synchronization Coordination

Distribution Object’s functional code

Fig.3 Separation of aspects in different approaches

The main benefits of this approach are:

• The set of components describing the basic
behavior of the object may be reused in
environments others than concurrent, coordinated
or distributed.
• Synchronization, coordination and distribution
components are not attached to any specific
behavior component. Conversely, they are
independent from each other. Consequently, these
components may be applied to any other behavior
components with different functionality but the
same synchronization, coordination or distribution
rules (polymorphism of components).
• As there is independence between aspects at the
implementation level, it is possible to specify them
in specific languages more suitable than general-
purpose languages.
• In the same way, the composition mechanism for
composing these concerns with basic functionality
may be different from those used for composing
individual concerns. This allows us to use a more
adequate composition mechanism for run-time
adaptability than inheritance or delegation.

Next we present the main ideas behind the two
proposed models. Although here presented separately,
currently they are being integrated.

In both, computational reflection [8] is the
technique used to achieve our goals.

3.1 Disguises Model
The Disguises Model works at the level of protecting
the object from concurrent invocations. So, it must
allow the specification of mutual exclusion
constraints and it must provide mechanisms for
controlling message acceptance based on the state of
the object.

Three different levels of execution can be
distinguished in the model (figure 4).

The base level is the level in which objects
exchange messages. Objects at this level have no
knowledge about synchronization. In order to
evaluate the synchronization constraints, incoming
messages are intercepted and redirected to the object
manager who is in charge of applying the
synchronization polices currently applied to the
object.

The disguise level contains the different
synchronization policies that control the execution of
methods in the object. These policies are independent
one each other. They are implemented in a particular

language more appropriate for synchronization than
languages for general purposes such as Java or C++.
This language uses the concept of abstract state
information [11], so they do not refer to
implementation details of objects at the base level. This
is the way to obtain polymorphism of synchronization
components.

manager
composition level

scheduling

base level

disguise level

policy 1 policy 2
…

Objects

messages

Fig. 4 Different levels of execution

The composition level contains the object manager.
Before allowing the execution of a message, the object
manager verifies if the object satisfies the
synchronization constraints currently defined in every
policy. If so, the message can be executed, optionally
performing pre-actions and post-actions before and
after the real execution of the method in order to
update synchronization constraints that do not depend
on the state of the object. If synchronization constraints
are not satisfied then the message will have to wait
until they are satisfied. The object manager also
decides what is the next message to be executed
according to the scheduling policy currently applied.

Inheritance is the mechanism to extend
synchronization and behavior components in an
independent way. However, a composition language is
provided to compose synchronization with behavior.
This language interacts with the object manager.
Composition can be made statically (compile time) as
well as dynamically (run time).

The programmer or a qualified operator can interact
with this manager to add, replace, modify or delete
synchronization policies by using the composition
language.

Currently there is an available version of the model
for Java. Figure 5 shows the different languages in the
model: Java for functional components, SLAS, the
Specification Language for the Aspect of

Synchronization, and CLAS, the Composition
Language for the Aspect of Synchronization.

inheritance inheritance

JAVA

JAVA JAVA

SLAS

SLAS SLAS

CLAS

Fig. 5 Different languages in the model

3.2 Coordinated Roles
Next, Coordinated Roles is presented, a general-
purpose coordination model specifically designed to
be integrated with active objects models. The main
goals behind its design are flexibility, composability,
polymorphism, distribution, and dynamic change of
coordination patterns.

The design of Coordinated Roles is motivated by
the behavior of large business organizations. These
are usually ruled by the leader hierarchy criterion.
The structure of coordination patterns in our model is
similar. A pattern is organized as a hierarchy of
coordination components. Every component can have
under its charge several groups of work and
coordination components. The task of every
component is to impose the laws of internal behavior
on every group it has under its charge and to
coordinate the whole behavior of all the groups and
leaders that depend on it. In the lowest level of the
hierarchy there are always groups of workers.

Every coordination component in the hierarchy
implements a part of the whole coordination pattern to
be imposed on working groups and other coordination
components. Every work group or coordination
component controlled by another one becomes a role
in the imposed pattern. The coordination components
are called coordinators of roles or simply
coordinators.

The mission of a coordinator is to monitor the
events that occur in every component under its
control. To code a coordinator, the programmer
simply specifies the events it reacts to, jointly with
the actions it executes in every case.

Coordinators are specified in a self-contained
language specific for coordination purposes that
makes no reference to the classes of the objects being

coordinated, providing the polymorphism feature of
coordination components.

A coordinator can monitor the events that occur in a
coordinated component using the Event Notification
Protocols (ENP) mechanism, which takes advantage of
the run time system of the objects. Through this
mechanism, an object, A, (the coordinator) can request
from another, B, (the coordinated) to communicate to it
the occurrence of an event E. The run time system of B
accepts and processes the request in such a way that,
when E occurs, it is communicated to A. Several
objects can ask for the notification of the same event.
Note that as the notification is controlled by the run
time system of B, B has no special code to be
coordinated. This feature increases the reusability of
such a component in environments others than
coordinated.

The events we can ask for notification of through
ENP are the reception of a message (RM events), start
(SoP events) or the end (EoP events) of the processing
of a message, or when a certain abstract state is reached
(SR events). The first three events are introduced for
the utility they have exhibited in the coordination
models based on the interception of messages [3],
while the fourth one solves the lack of expressive
power of those models. All the notifications can be
asked for in an asynchronous or synchronous way.
With the asynchronous protocols the run time system
of the coordinated object simply communicates the
occurrence of the event and continues performing its
actions. With the synchronous protocols, the run time
system of the coordinated object communicates the
occurrence of the event and then waits for the response
of the coordinator. When the coordinator receives the
notification it executes the coordination actions
associated with the event. Next, the coordinator sends
the response to the coordinated object. This response
can be positive letting to continue to the coordinated
object with the action that triggered the event, or
negative, forcing the coordinated object to abort this
action.

In addition to the simple events described above, a
coordinator can monitor compound events. A
compound event is a group of simple events to which a
sequence of actions that will only be executed when all
the events of the group have occurred is associated. To
declare a compound event, the programmer gives it a
symbolic name, associates with it a series of
notification requests as asynchronous or synchronous
simple events and, finally, specifies the sequence of
operations to be executed when all notifications have

taken place. Compounds events let us express mutual
interdependencies among different objects (an object
A cannot execute the action P unless object B
executes Q and vice versa).

As it has been mentioned before, a coordinator, A,
can monitor other coordinator, B. In particular, A can
monitor in B all the events that B monitors in the
objects under its control. In this way, when a
notification is received in B, it is propagated to A.
This feature lets the composability of complex
coordination patterns by means of fine-grained
coordination components.

In Coordinated Roles both, coordinators and
coordinated components, are implemented as active
objects. In order to build coordination hierarchies and
to impose coordination patterns on objects the
programmer simply instantiates coordinator and
worker objects and afterwards, he builds the
coordination hierarchy placing some coordinators (or
workers) under the control of others. This process is
done through an special composition syntax which
allows the dynamic change of coordination patterns.

The fact of each coordination policy being a set of
active objects, possibly running in different
computers, makes possible the distribution of such
policies.

Currently, a prototype has been developed for
ATOM [11] and it is running on Linux. Experience
has been gained and an improved version is being
developed for Java.

3.2 Distribution
In both models, disguises model and coordinated
roles, we are integrating the separation of the
distribution code. This means that objects developed
without distribution code can be accessed from and
coordinated with remote objects using different
distribution protocols such as JavaRMI, Corba or
ILU.

The same idea behind synchronization and
coordination holds: the possibility of statically and
dynamically interchanging distribution protocols.

4 Conclusions
In this paper we have shown how the separation of
aspects principle improves software adaptability. In
particular we have focused on the synchronization
aspect. We have identified three different levels of

synchronization that have led to the development of
two different models, disguises model for mutual
exclusion and message acceptance control, and
coordination roles for multi-object coordination.

Although here presented separately, currently they
are being integrated in one single model. The ultimate
idea is to provide a final framework for the
development of reusable software components.

Acknowledgments
This work has been developed with the support of
Junta de Extremadura, under project IPR98A041and by
CICYT under project TIC98-1049-C02-02.

References:

[1] M. Aksit, B. Tekinerdogan, L Bergmans. Achieving
Adaptability through separation and composition
of concerns. Max Mühlhäuser editor, Special
Issues in Object-Oriented Programming,
Workshop Reader of the ECOOP’96, Linz,
Austria.

[2] L. Bergmans. Composing Concurrent Objects.
Ph.D. Thesis, University of Twente, 1994.

[3] S. Frø lund. Coordinating Distributed Objects. An
Actor-Based Approach to Synchronization. The
MIT Press, 1996.

[4] W. Hursch, C. V. Lopes. Separation of Concerns.
Northeastern University, February 1995.

[5] G. Kiczales et al. Aspect-Oriented Programming.
Proceedings of ECOOP’97, Jyvaskyla, Finland,
June 1997.

[6] J. Kleinöder, M. Golm. MetaJava: An Efficient
Run-time Meta Architecture for Java. Proceedings
of International Workshop on Object Orientation
in Operating Systems, October, 1996, Seattle,
Washington.

[7] C.V. Lopes. D: A Language Framework for
Distributed Programming. Position paper in
Aspect-Oriented Programming Workshop of
ECOOP’97, Jyvaskyla, Finland, June 1997.

[8] P. Maes, Concepts and experiments in
computational reflection. Proceedings of
OOPSLA’87, Vol.22 of ACM SIGPLAN
Notices, pp 147-155, ACM Press, 1987.

[9] S. Matsuoka, A. Yonezawa. Inheritance Anomaly
in Object-Oriented Concurrent Programming
Languages. in Research Directions in Concurrent
Object-Oriented Programming Languages. Ed.:
G. Agha, P. Wegner and A. Yonezawa, MIT
Press, April 1993, pages 107-150.

[10] J.M. Murillo, J. Hernández, F. Sánchez, L.A.
Álvarez. Coordinated Roles: Promoting
Reusability of Coordinated Active Objects Using
Events Notification Protocols. To be published in
Proceedings of Coordination’99, Amsterdam, 26-
28 April, 1999.

[11] M. Papathomas, J. Hernández, J.M. Murillo, F.
Sánchez, Inheritance and Expressive Power in
Concurrent Object-Oriented Programming.
Proceedings of the LMO Conference, Roscoff,
France, Oct. 1997.

[12] F. Sánchez, J. Hernández, M. Barrena, J. M.
Murillo, A. Polo. Issues in Composability of
Synchronization Constraints in Concurrent
Object-Oriented Languages. Max Mühlhäuser
editor, Special Issues in Object-Oriented
Programming,, Workshop Reader of the
ECOOP’96, Linz, Austria.

[13] F. Sánchez, J. Hernández, J. M. Murillo, E.
Pedraza. Run-time adaptability in COOLs.
Technical Report n°1/97. Computer Science
Department. University of Extremadura.
September 1997.

