
On the Evolution of Software Architectures

VASSILIOS C. VESCOUKIS
National Technical University of Athens

Department of Electrical and Computer Engineering
15780 Zographou, Athens

GREECE

Abstract : Software is a complex technical construction that has been developed and used for the past few
decades. The evolution of software applications has followed that of computer hardware and today, some sort
of software application exists in most artificial systems. In their early days, software applications were usually
quite simple, compared to today's giant and complex applications, and the difficulties in their construction
focused on very fundamental issues. After the 80's and even more during the 90's, software applications have
become very complex. Their development is supported by sophisticated tools and their runtime environments
are much more advanced than in the early days. There are more than one choice on how to structure a software
application and questions that a few years ago had only one answer, today have fairly more. The issue of
software architecture has risen and several architectures have been proposed in order to develop better and
more effective software. This paper is a review of the most important of the software architectures from the
monolithic to the fully distributed one, focusing on the evolution, the advantages and the shortcomings of each
one of them. IMACS/IEEE CSCC'99 Proceedings, Pages:7431-7437

Keywords: Software engineering, distributed systems, web-based software applications

1 Introduction
For the construction of any artificial item, a full

description and a design has to be preceded. This
design can be more or less detailed and can be
drawn from many different visual angles depending
on its designated purpose. After the design process
has finished, a set of designs describes the different
perspectives of the construction with more or less
detail, depending on whom each one appeals to.
These represent an abstract description of some
characteristics of the artifact under construction.
When the artifact is solid the perception of design
can be almost straightforward, but this is not the
case in invisible constructions like software.
Software designs, even "simple" ones, usually can
be perceived in many different ways, and have no
one single interpretation.

Things become even more complicated, when
software runs in a distributed runtime environment,
li ke an intranet or the Internet. This idea is not an
innovative one, as there is a tendency for software
applications to function in a distributed network
environment, not only in terms of deployment (that
is, network connection among computers) but also
in terms of functionality. In this context, the notion
of “software architecture” is not any more a

wishful thought. It became the centre of attention
in the development of many software applications.

1.1 Software architectures

With the term “software architecture” we refer
to the description of the division of an application
into parts (building blocks) and to the
interoperability among them, so that the tasks
required from software can be accomplished [2, 8].
What exactly a building block of software is
(procedure, routine, function, class, library, etc),
depends on the specific implementation details.
The same stands for the term "interoperability"
which can be regarded as procedure or function
call, message, responsibility, etc, depending again
on the implementation details. The disciplinary or
non-disciplinary, documented or not architectural
structure of an application, is determined by the
designer (actually the "designer" here describes a
role instead of a single person).

Whatever the software development discipline
followed is (if any), the division of an application
into functional elements is made in order to
"better" implement the functional and non-
functional requirements in a specific
implementation environment, as well as to satisfy

other conditions like maintainability, extensibility,
reusability, etc. The adjective "better" here, can be
viewed from several angles depending on the
culture of each developer. In the course of software
history, there have been several interpretations of
what "good" software is, however there is little
doubt that the debate is still on.

In the sequence we shall refer to the mainstream
software architectures as they have been introduced
in the evolution of software development. We
identify four architectural categories: the
monolithic, the client-server, the three-tier and the
multi-tier generic architecture. Before we do that, it
is important to divide software functions in
categories (or layers, although the layering of
software is not always clear). The assignment of
these functions to discrete software modules is
what will be used for the definition of software
architecture categories in the sequel.

1.2. Software layers

By the use of the term "function" here we do
not refer to some specific functional requirement,
but to a generic category of operation that has to be
performed regardless of the individual
requirements imposed by the application domain.
We identify three such categories: business logic,
data management and presentation (figure 1).
Tasks like the implementation of security and
access rights can be applied in any (or in all) of the
aforementioned categories or directly in the
operating system and without affecting the purpose
of the argumentation to follow, will not be
discussed.

The first such category is actually where the
purpose for which we build the software is fulfilled
and is called business logic. This definition is not
widely accepted in academic environments where
the term functional requirement is more acceptable.
It is in the business logic layer, where the
implementation of all the functions (requirements)
of a software application is done.

The second one is the data management layer
and it is where all the data-related functions, such
as storage, retrieval, duplication, etc, are
implemented. Obviously, not all software
applications perform such functions since not all
applications deal with persistent data. However,
most business applications do handle persistent
data and in the sequel, without affecting the

generality, we shall assume that a data management
layer does exist in all software applications.

Finally, we distinguish the presentation level
that is, that part of software where the flow control
and the user and other external interfaces are
implemented. Again, without harm to the
generality, we shall assume that all software
applications do have such a layer.

Business Logic
D ata

M anagem ent
and S erv ices

Presenta tion

Figure 1. Layering of software functions

Not all of the aforementioned layers can be
distinguished in all software applications [5]. In not
a few cases all of these functions are mixed-up in
software elements, so that it is not possible to
determine which layer or category a software
element belongs in.

2 Software architectures

2.1 Monolithic architecture

The simplest of all software architectural
schemas is the monolithic one, which dominated in
the early days of computing [2, 3]. Monolithic
software applications run in their entirety in one
single main computer, as shown in figure 2. By this
we mean that all the application-related tasks run in
the same computer and make use of its resources
such as memory and CPU.

In the early days of computing the single
monolithic structuring was the only available way
for structuring software applications: there was one
single specific computer where the application was
intended to run. Interoperability and distribution
where unknown notions and there was one single
purpose: that the application runs. In this category
we classify the legacy applications of mainframes
that communicate with the user through dump
terminals, custom-made applications that ran on
PCs, off-the-shelf shrink-wrapped applications.
Such applications have been made very "popular"

in the late eighties, when the PC has entered in the
small business offices.

���� ����������

	
������
����

������������

����� ����	
�
�	�

���� ����������

	
������
����

������������

��� ������	�

��� ���� ����	
��

���� ����������

	
������
����

������������

���� ������
�������	�

����
������

���

Figure 2. Monolithic applications

We also classify here applications that make use
of some remote storage - not computing power -
which is available through a network file server.
All the operations of monolithic applications are
performed on the same CPU and memory space, as
shown in figure 2. In the late seventies and even
more during the eighties, the evolution of computer
networks and the appearance of the first data base
management systems, have defined the framework
in which the first distributed software architecture
has been developed.

2.2 Client-server schemas

The early monolithic giant applications have
been replaced by more numerous but smaller ones
that co-operate with each other accessing the same
data, which is stored in a database server. This
scheme was named client-server and has been
popular for quite a long time. In fact, most of
today's corporate applications still follow the
client-server paradigm. In this schema, the data
management and perhaps some of the business
logic is responsibility of the database server. The

presentation and the (rest of) business logic are the
client's responsibility (figure 3).

����

����������

�	��	�

	
������
����

������������

��� ���	��

Figure 3. The client-server paradigm

In the client-server paradigm, each application
has two discrete and functionally independent
parts: the client and the server. Each one runs on a
separate computer or as a discrete task in the same
computer. They do not require each other in order
to exist, and although from the user's point of view
they are not of use unless they work together,
technically they are completely independent pieces
of software that may run in different operating
systems.

The client-server paradigm has dominated for
quite a long time, and in many cases is still
dominant. One of its major shortcomings is the cost
of maintenance of numerous clients with every
change in the business logic or in the presentation
layer implementation, as requirements evolve over
time. Another one, is the size of the client itself,
which constantly increases as applications become
more and more complex and feature-loaded. This
kind of client, the "traditional" one, is referred to as
"fat client".

2.3 Three-tier architectures

Lately a more refined instance of this schema
has been introduced, based on the different
allocation of the fat client responsibilities (in fact
on the split of these responsibilities). The client-
server model has evolved to a three-tier schema as

shown in figure 4. In this case, the servers are two:
the database server, that operates as in the classic
client-server model and the application server on
which runs a big part or all the software functions
in the business logic level. The responsibility of the
presentation still is on the client side, which is
connected either only to the application server or
both to the application and database servers. This
kind of client is referred to as “thin client”.

In a more generic version of this schema, more
than one application server may exist, forming an
even more distributed computing paradigm. This is
the case of the multi-tier architecture using thin
clients and should not be confused with the multi-
tier web-based architecture whose description is to
follow.

�������� �	
��

����������	 ��
��

�
��������	�

���	 ����	�

����

����
�����

���� ������

�
��������	�

���	 ����	�

Figure 4. The three-tier thin client paradigm.

This schema eliminates several shortcomings of
the traditional client-server model. The biggest part
of the maintenance is done more in the database
and/or application servers and less in the client,
which results in the decrease of the maintenance
cost. This is because (a) the frequency of
interventions in the client is generally lower and
(b) the client's fixed cost is less since the
computational and storage load have been
transferred elsewhere (to the application and the
database server, respectively). However, the client
still needs maintenance, especially whenever
changes to the presentation layer need to be
implemented.

��� �����	

��� �����	

��� �����	

��������� ���������

	
�� ���

���

�����
���

���� ������

�������� �����

	

��
����� ������

������������

��� ������

��������� ���������

	
�� ���

Figure 5. A multi-tier web-based software architecture

2.4 A multi-tier web-based schema

We are already in the nineties and the networks
are in the era of the big explosion that led to
today's global domination of the Internet. The web
technologies have appeared and the www, which
was introduced as a simple distributed presentation
framework, evolved to become a mature,
interactive and complete application environment.
The main difference from the multi-tier thin client
schema mentioned above, is that here no client
(thin or fat) exists. A web browser takes its place,
which carries no application-specific responsibility
at all. The presentation responsibility is now
assigned to a web server to which the web browser
is connected. This means that no application-
specific software needs to be installed in the
client's side: a suitably tuned generic web browser
can do the job.

The idea is called web client (figure 5) and the
main innovation it carries along is the transfer of
the presentation services from a custom (no matter
whether thin or fat) client to a suitably tuned web
server. This is shown in figure 5, where in the same
company environment exist more than one server
from each category. The intranet/internet
connections can be any suitable for the company
needs (for example a LAN or VPN).

The maintenance of the software applications
can be done totally in the premises where the
servers are located, that is in the corporate
computer room. More than one servers can be
active in a corporate computing environment,
depending on the general architecture of the
company's intranet, on the available machines, on
the distribution of the services, on the security
requirements, etc.

3 A new computing paradigm

Most of current business software applications
follow the client-server paradigm. Personal desktop
applications are still monolithic, although they are
modular, that is, there are several application
modules that execute at the same time, making use
of the current multi-tasking OSs. Today there is an
increasing interest in the development and
deployment of web-based applications. Indeed,
many software applications classified as ERP
(Enterprise Resource Planning) begin to adopt the
web client concept.

Furthermore, what is actually rising is a
completely new computing paradigm that will be
fully distributed and quite flexible. The web client
concept is not applicable only when all the
distributed software fragments are constructed by
the same developer. Co-operating distributed
software modules can be of several developers or
even application service providers. An integrator
can collect application and data services from all
around the Internet, add some value in terms of
business logic and presentation services and
provide a new service to his own clients. The
clients will pay for the service the integrator, who
in turn will pay for the application and database
services he has used. This concept is shown in
figure 6.

As an example, one can imagine the
sociological analysis of sales data using many
different methods. One choice for the structuring of
such an application is to embed the related data and
all the different analysis algorithms, providing a
complete solution. Instead of doing this, a
developer can buy the data services as well as the
analysis services from independent sources, build a
communication framework and a web-based user
interface and rapidly deliver a new service to the
market. This way is not only faster, but also much
more flexible. Each part does exactly what
specialises in, no unneeded data redundancy costs
exist, and the computational resources available to
the customer are more than they would be if only
one developer had to create software for all the
possible data analysis methods.

��������

����������	 ��
��

����	
��	��

���	
�

����	���

���� ��
��

����

���	
�

����	���

��� ��
��

����	
��	��

����������

��� ����	�

��� �
��

���� ��
��

����

���	
�

����	���

���

�������

�����	��

Figure 6. A new computing paradigm

Of course, much work has still to be done
before such a computing paradigm can dominate or
even exist in a measurable scale. The network
availability, reliability, speed and security are the
obvious technical problems the solution of which
will undoubtedly push things ahead. More serious
problems exist in the software domain where things
are still somehow confused in terms of standards,
APIs, services and even development
environments. Technologies like COM/DCOM,
Java and scripting strive to gain acceptance from
developers. The large installed basis of legacy
systems and the non necessarily standard
middleware that is used, do not allow the easy
interoperability that the web-based distributed
application schema requires.

The description of software architectures had
not been standard for a long time and several
different notations have been used to denote more
or less the same things. Lately, the Unified
Modelling Language (UML) has been accepted by
the OMG as the standard notation schema for
object-oriented software systems (in fact UML can
be used for the modelling of non-software artefacts
as well). In figure 7, the equivalent of the notation-
free diagram shown in figure 5, is presented using
the UML notation [7]. In the UML terminology [6],
this is called a deployment diagram.

���

�������

��� ������

	

��
	����

������

�	�	�	��

������

Figure 7. A UML deployment diagram.

5 Concluding remarks

Software engineering has gone a long way from
the early days up to our days. The monolithic
applications which became giant legacy
applications can no longer satisfy the requirements
of computing today. On the way, several
cooperative paradigms have been introduced, all
under the generic name "client-server". The
evolution of global networks, basically of the
Internet, has created the basis for a completely
new, truly distributed computing paradigm.

In the future, more and more existing software
applications will migrate to this new paradigm.
What is even more impressive, is that this
paradigm will allow the conception of new ideas
for new software applications and services. In fact,
several new-generation applications are currently
under design [5] and development and one can only
say that "the best is yet to come"._

References

[1] Agresti, W.W., "New Paradigms for
Software Development", IEEE Computer
Society order number 707, IEEE Computer
Society Press, 1986.

[2] Fairley, R.E., " Software Engineering
Concepts", McGraw-Hill, 1985

[3] Sommervile, Ian, "Software Engineering",
Fourth Edition, Addison-Wesley, 1995.

[4] S.Retalis, V.C.Vescoukis and E.Skordalakis,
"An Object-Oriented Data Model for Web-

Based Courseware Design", in "Software
and Hardware Engineering for the 21st
Century", N.Mastorakis (editor), World
Scientific, 1999.

[5] De Paoli, Flavio and Sosio, Andrea,
"Requirements for a layered software
architecture supporting cooperative multi-
user interaction", in proceedings of the 18th
International Conference on Software
Engineering (ICSE), IEEE Press, 1996.

[6] G. Booch, J.Rumbaugh and I.Jacobson, "The
Unified Modelling Language User Guide",
Addison-Wesley, 1999.

[7] J.Rumbaugh, I.Jacobson and G. Booch, "The
Unified Modelling Language Reference
Manual", Addison-Wesley, 1999.

[8] Roger Pressman, "Software Engineering. A
practitioner's approach", Mc Graw Hill,
1997.

