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Abstract: - The paper addresses the problem of efficiently handling certificates within public-key
infrastructures, from both the communication traffic and computational load points of view. The main state-of-
the-art schemes, recently proposed from both the academic and the industrial world, are discussed and the
most relevant security, timeliness and efficiency features outlined. A thorough analytical investigation on the
attainable performances is then carried out. Particular emphasis is placed on the computational load deriving
from application of each scheme, because this matter has not yet received the attention it deserves.
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1   Introduction
In the last few years the Internet has become a
ubiquitous reality, widely used to carry all kinds of
public-domain information. With the integration of
adequate security features in the existing
infrastructure, its diffusion and ease of access could
be exploited to effectively enhance also the
exchange of sensitive data, li ke legal documents and
business transactions. Asymmetric cryptography,
with its capability to provide privacy, authentication,
integrity and non repudiation features for digital
documents, seems to be the most viable solution
presently available.
Within an asymmetric cryptosystem each user owns
a pair of numbers called keys. Due to the
mathematical properties of the pair, a digital
signature produced with one key can be verified
with the other one only. The key used for signing is
called private key and must be kept strictly secret by
its owner, while the key used to verify signatures is
called public key and should be made widely
available.
Public Key Infrastructures (PKIs) perform the
fundamental task of binding each public key to its
owner. The entities of a PKI and their mutual
relationships, described in detail in [1], are
schematically shown in Fig. 1. When a user presents
a request to the Registration Authority (RA) to
become a PKI member, a certifi cate is issued which
contains the user identity (ascertained in a secure
way) and the associated public key, together with
some other relevant information such as the

certificate issue and expiration dates. The certificate
is signed by a Certification Authority (CA), so that
its integrity is guaranteed, and published to the
directory where it is made available to all PKI users.
The CA’s public key, which is required to verify any
CA's signed document, is transferred to the new user
via a secure channel.
A study [2] undertaken on behalf of the USA
National Institute for Standard and Technology
(NIST) shows that, on the average, 10% of all
certificates managed within a PKI are subject to
revocation, i.e. they lose validity before the natural
expiration date (commonly set to one year after the
emission date). Revocation can be necessary for
many reasons, e.g., private key compromise or
changes in user affiliation. As a consequence, proper
use of a public-key certificate involves not only
integrity, authentication and expiration date
verification, but also revocation status check.
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Fig. 1 - Architectural model of a PKI



A very important classification is between off-line
and on-line certificate status handling systems. The
definition of off-line systems encompasses all the
schemes where a CA, not exposed to network
attacks, periodically (typically once per day)
authenticates and publishes to the directory the
certificate status changes notified by the RA. The
main advantage of these schemes is that they don’t
rely on a trusted directory, the integrity of status
information being directly guaranteed by the CA’s
signature. The main drawback, on the other side, is
the latency associated with status information
updating following either a certificate revocation or
a certificate revocation removal. On-line systems
overcome this limitation by temporarily delegating
the task of authenticating certificate status
information to the directory. Within these schemes,
in fact, status updating is performed by the directory
not only periodically on the basis of the information
received by a CA, but also on-line, following direct
notification by the RA of a certificate status change.
The drawback now is that the directory must be
trusted and suitably protected against network
attacks.
Whichever scheme is chosen, the deployment of a
certificate status handling system deeply affects the
performance of a PKI. This clearly emerges from the
NIST study cited above, which indicates that the
communication traffic related to certificate status
updating and verification is the cause of the highest
among the PKI maintenance costs. Other
parameters, such as the computational load deriving
on PKI’s entities from application of a certificate
status handling scheme, greatly influence overall
performance. In the following the main recently
proposed schemes from both the academic and the
industrial world, namely the Certificate Revocation
List [1], the Certificate Revocation Status [3], the
Certificate Revocation Tree [4], and the On-line
Certificate Status Protocol [5], are examined. For
each of them the most relevant security, timeliness
and efficiency features are outlined, the latter being
emphasized in terms of:
• directory incoming and outgoing traffic;
• CA, directory (when applicable) and user

computational load.

Comparative analysis of performance has been
performed under the NIST assumptions that the total
number of certificates handled within a PKI is
constant and uniformly distributed among CAs, and
that each CA works under stationary conditions as
regards the number of certificates subject to
revocation. This means that, for each CA and within
any certificate status update period, the average

number of new revocations is balanced by as many
revocation removals. As regards PKI’s entities
computational load, a matter often not explicitly
addressed in the literature, a thorough investigation
has been purposely carried out. In order to make the
results more coherent and consequently their
comparison more meaningful, a common metric has
been adopted for characterizing the load associated
with the different cryptographic primitives (such as
hash functions, lightweight and standard signatures)
exploited by the various schemes.

2   Off-line certificate status handling
schemes

2.1 Certificate Revocation List (CRL)
CRL, currently published as RFC2459 [1] in the
Internet Society standards track, has been the first
proposed scheme for certificate status handling.
Within this scheme every CA maintains a list of (the
serial numbers of) all assigned revoked certificates,
each associated with the corresponding revocation
date and time. At a predefined daily rate T, the
whole list, prefixed by the CA identity, the current
date and time and the next scheduled certificate
status publication date and time, is digitally signed
and transferred to the directory. This very simple
scheme clearly guarantees against any possible
tampering of certificate status information. However
it exhibits a serious drawback, since each time users
query the directory, usually to know the status of a
single certificate only, get a whole list as a reply.

(a) CA computational load evaluation
Under the assumption that each CA works under
stationary conditions as regards the number of
certificates subject to revocation, it is immediate to
evaluate the entries number R of the list a CA has to
periodically sign and transfer to the directory. R is
simply given by:

CAN

PN
R

⋅= (1)

where, according to NIST notation, N indicates the
total number of certificates handled within a PKI, P
the revoked certificates fraction, and NCA the number
of CAs. Each CRL entry involves lsn bits for the
representation of the serial number of a revoked
certificate, plus l ts bits for the representation of the



corresponding timestamp. A CA, whenever signs the
list, has to first compute the list digest via a hash
function, then perform a modular exponentiation on
the result. By ignoring the contribution deriving
from the information prefixed to the list, the CA
daily computational load can thus be estimated as:

( )sightssnCA LLRllTL +⋅⋅+= )( (2)

where Lh denotes the equivalent load of a 1-bit
digest operation and Lsig the equivalent load of a
modular exponentiation.

(b) Directory incoming traffic evaluation
At each status update, every CA publishes its list on
the directory. The deriving directory incoming
traffic, in bit/day, is then given by:

( ) CAsigtssnINDIR NlRllTT ⋅+⋅+⋅=− )( (3)

where lsig indicates the number of bits involved in
the representation of a signature.

(c) Directory computational load evaluation
In a CRL-based system no cryptographic operations
are requested to the directory in order to reply to
user queries.

(d) Directory outgoing traffic evaluation
Each time a user needs to check a certificate status, a
whole list is sent as reply. The overall directory
outgoing traffic, in bit/day, is then given by:

( )sigtssnOUTDIR lRllQT +⋅+⋅=− )( (4)

where Q is the daily number of user queries.

(e) User computational load evaluation
To perform a certificate status check, a user needs to
search the CRL for the corresponding serial number,
once verified the signature on the list. It is
reasonable to assume the latter contribution as the
most relevant, so that the computational load can be
estimated as:

sightssnUSER LLRllL +⋅⋅+= )( (5)

2.2   Certificate Revocation Status (CRS)
With the aim of preventing users being flooded with
superfluous information, Micali proposed CRS in
1995. This scheme exploits as cryptographic
primitive the lightweight signature introduced by

Lamport in 1981 [6], which allows to sign a limited
set of elements more efficiently than standard
general-purpose signatures. A lightweight signature
algorithm is exploited by CAs to individually sign,
at each updating period, each single certificate
status. This operation, which would bear an
unsustainable load if performed with standard
signatures, allows replying to user queries only with
the exact piece of information needed.
In details, for each certificate a CA generates and
keeps strictly secret a pair of numbers YES0 and
NO0. A public domain one-way hash function f is
applied both to NO0 to get NO=f(NO0), and,
repeatedly, to YES0 to get YES=f n(YES0), where n is
the number of status updates envisaged during the
certificate lifetime. NO and YES are published as
part of the certificate. At the i th status updating
period, a CA computes and publishes either
Si=f n-i(YES0) or Si=NO0, depending on the certificate
being still valid or revoked, respectively. By getting
Si as a reply to a status query, a user is able to
determine the validity of a certificate simply
checking whether f(Si)=NO or f i(Si)=YES (Fig. 2).
Phony extension of the validity of a revoked
certificate (or phony revocation of a valid
certificate) without knowledge of YES0 (NO0) is
impossible, as it would imply inversion of the one-
way function. It is clear that this scheme can be used
n times only, and that status updating timing must be
strictly fixed to avoid replay of old replies.
The advantage of this solution over CRL is the
strong reduction in communication traffic between
directory and users. However, notwithstanding the
use of lightweight signatures, the CA computational
load is much higher than in CRL. The deriving
directory incoming traffic is also much higher, since
it is no more proportional to the number of revoked
certificates, but to the total number of certificates
handled within a PKI.
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(a) CA computational load evaluation
In the usual case of one-year certificate lifetime,
every CA has to periodically apply the one-way
function, on the average, 365·T/2 times for each of
the (1-P)·(R/P) valid certificates. By ignoring the
additional load due to revoked certificates and the
initial computation of YES for the new certificates,
the CA daily computational load can thus be
estimated as:

hlwsigCA LlR
P

P
TL ⋅⋅−⋅⋅= 1

2

365 2 (6)

where l lwsig  is the number of bits involved in the
representation of the validity status of a certificate.

(b) Directory incoming traffic evaluation
At each status update, the directory receives a pair
(serial number, updated YES value) for each valid
certificate, and a pair (serial number, NO0 value) for
the each certificate just revoked. The resulting
traffic, in bit/day, is therefore:








⋅
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(c) Directory computational load evaluation
In the CRS scheme no cryptographic operations are
requested to the directory in order to reply to user
queries.

(d) Directory outgoing traffic evaluation
A user query about a certificate is replied with the
corresponding status information only. The resulting
directory outgoing traffic, in bit/day, is therefore:

lwsigOUTDIR lQT ⋅=− (8)

(e) User computational load evaluation
A user is asked to perform the computation needed
to transform the returned status information either
into NO or into YES. The first case, which requires a
single application of the hash function, occurs with
probability P; the second case, which requires on the
average 365·T/2 applications of the hash function,
occurs with probability (1-P). The resulting average
computational load is therefore:

hlwsigUSER LlP
T

PL ⋅⋅




 −+= )1(

2

365
(9)

2.3   Certificate Revocation Tree (CRT)
The more recent CRT method, devised by Kocher,
exploits a new concept. In this scheme the status of
the certificates handled by a CA is represented by
partitioning the domain of the associated serial
numbers into as many subranges as the number of
revoked certificates. Each subrange is represented
by a statement simply reporting its bounds, meaning
that only the certificate at the lower bound is
revoked. A single statement thus provides an
explicit status proof for all certificates belonging to
the related subrange.
A statement set is authenticated by building a binary
tree, where the leaves are associated with the
statements and each intermediate node is computed
as the cryptographic hash of the concatenation of the
corresponding two sons (Fig. 3). The tree root,
which eventually contains a contribution from all the
statements, is signed. The status information about a
certificate is derived from the leaf node associated
with the statement encompassing the certificate
serial number, the corresponding sibling leaf node
and all other siblings of the nodes in the search path
leading to the tree root. Due to the one-way property
of the hash function, it is not possible to forge a
statement and find a corresponding proof of
existence leading to the authenticated root value.
Certificate status update forces a CA to rebuild the
whole tree, with complexity proportional to the
number of revoked certificates. By exploiting the
capability of the directory to do the same, it is
possible to drastically reduce the traffic from CAs to
directory, by transferring only the serial number of
the certificates whose status has changed since the
last update.

Fig. 3. Example of a 4-leaves CRT.

(a) CA computational load evaluation
At each status update, a CA has to rebuild a binary
tree with as many leaves as the number R of revoked
certificates. This calls for computation of (R-1)
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performed over the tree root. The resulting daily
computational load is therefore:

( )sighstatCA LLlRTL +⋅⋅−⋅= )1(2                (10)

(b) Directory incoming traffic evaluation
Two alternative approaches are possible for
updating certificate status information on the
directory. If the directory computational load is to be
minimized, or if the directory has no computation
capabilities at all, the whole tree, together with the
signed root, has to be published by each CA. If the
capability of the directory to build a tree can be
exploited, each CA has to send, in addition to the
tree signed root, only the serial number of
certificates whose status changed since the last
update. Since communication traffic is usually the
most critical factor, the second approach is here
examined. The directory incoming traffic, in bit/day,
is given by:

CAsigsnINDIR NllR
T

TT ⋅+⋅⋅=− )
365

2
(             (11)

(c) Directory computational load evaluation
The directory has to build, at each update, NCA trees,
leading to a daily computational load of:

CAhstatDIR NLlRTL ⋅⋅⋅−⋅= )1(2                 (12)

(d) Directory outgoing traffic evaluation
The reply to a user query about a certificate status
comprises the related statement, its proof of
existence (composed of as many nodes as the tree
depth), and the signature on the tree root. The
directory outgoing traffic, in bit/day, is given by:

 ( )sigstatOUTDIR llRQT +⋅+⋅=− )log1( 2            (13)

(e) User computational load evaluation
A user, receiving the reply described above,
computes the proper sequence of hash operations
and verifies the signature over the resulting value.
The computational load is:

  sighstatUSER LLlRL +⋅⋅⋅= 2log2             (14)

2.4   Certificate Revocation Tree Extension
An evolution of CRT, based on a data structure
called 2-3 tree, has been recently proposed by Naor
and Nissim [7]. The advantage of this structure over
a binary tree is that node insertion or deletion can be

performed without rebuilding the whole tree: only
the search path leading to the new or old node is
affected. The computational load induced by status
updating is consequently lower, whereas the
directory outgoing traffic is higher because in 2-3
trees a node may have either one or two sibling
nodes. Moreover, in the Naor-Nissim scheme the
tree leaves represent revoked certificates instead of
statements. Therefore the proof of a certificate
validity calls for the demonstration of the existence
of two adjacent leaves, representing respectively a
revoked certificate with serial number lower and one
with serial number higher than the queried one.

3   On-line certificate status handling
schemes

3.1 On-line Certificate Status Protocol
(OCSP)

OCSP derives from the original proposal of the
Real-Time Certificate Status Protocol [8]. Within an
OCSP-based system certificate status authentication
is delegated to a responder within the directory, i.e.
it is guaranteed by a signature produced with a key
that a CA and/or users trust. The certificate status
database can be periodically updated by means of
traditional CRL issuing, or also by means of
immediate notification of a status change request
from the Registration Authority. This strategy not
only improves information updating timeliness, but
also reduces the directory outgoing traffic, because a
reply contains only status information about the
queried certificate.

 
(a) CA computational load evaluation
CAs are not directly involved in the generation of
OCSP replies.

(b) Directory incoming traffic evaluation
The OCSP responder needs to receive revocation
and revocation removal notices only. The incoming
traffic, in bit/day, is given by:

 
365

2 sn
INDIR

lPN
T

⋅⋅=−             (15)

(c) Directory computational load evaluation
Each query needs a signed reply which, the first
time, has to be computed on the fly. Once computed,
replies can be cached and replayed for some time.
This advantage, however, can be ignored when,



according to the NIST working assumptions, a
certificate is queried about once a day. A one-day-
old reply will probably be considered too old, and
will be signed again when needed. The daily
computational load is then:

)( sighrOCSPDIR LLlQL +⋅⋅=             (16)

where lOCSPr is the number of bits needed to
represent an OCSP response, formed with the
queried certificate serial number, the status
indication (good, revoked or unknown), and various
header information.

(d) Directory outgoing traffic evaluation
The directory outgoing traffic derives from the
transmission of the signed replies and is given, in
bit/day, by:

)( sigrOCSPOUTDIR llQT +⋅=−             (17)

(e) User computational load evaluation
A user needs only to check the reply signature:

sighrOCSPUSER LLlL +⋅=             (18)

3.2   Proprietary certificate extensions
Various PKI-related software developers have
defined their own implementations of certificate
status handling schemes. An example is the
Netscape Certificate Extension [9], which exploits
the capability of X.509v3 certificates to contain
optional data fields called extensions. Including a
netscape-revocation-url extension in a certificate
causes any Netscape software to contact the
specified location in accordance with the HTTP
protocol and perform a status query. (The extension
is simply ignored when the certificate is parsed by
non-Netscape software.) The reply should consist of
a single ASCII character, a '0' if the certificate is
currently valid, a '1' in the opposite case. The
security of this scheme is not very high, because the
reply is not signed at all. The only kind of guarantee
about its integrity and authenticity comes from the
use of a secure (HTTPS) connection.

4   Concluding remarks
The performances of the considered state-of-the-art
certificate status handling schemes are synthetically
illustrated in Figs. 4-7. The numeric values selected
for quantitative comparison (see Table 1) have been

derived from NIST suggestions and from publicly
available benchmarks on cryptographic algorithm
execution times [10]. The on-line OCSP scheme
provides the highest timeliness, at the expense,
however, of a heavily loaded directory, and exhibits
a fair level of security when supported by parallel
emission of CA-authenticated certificate status
information, like CRLs. More recently proposed off-
line schemes yield very interesting performance.
They are intrinsically more secure than any on-line
scheme and exhibit, particularly CRT, a
communication traffic not much higher than OCSP
and a computational load low enough to allow
frequent updating of certificate status information.
Research studies currently being undertaken aim to
devise off-line schemes that make both the
communication traffic, particularly the directory
incoming traffic, and the overall computational load
less dependent from the number of PKI users and
certificates status update frequency. Interesting
results seem emerge from approaches exploiting
OWA cryptographic primitives [11], [12] and
incremental cryptography techniques [13-16].

Symbol Meaning Default value
N total number of

certificates
3·106

P revoked certificates
fraction

0.1

NCA number of CAs 100
T daily number of

certificate status updates
1

Q daily number of
certificate status queries

= N

lsn certificate serial number
bits number

20

l ts timestamp bits number 48
lsig digital signature bits

number
1024

l lwsig CRS status information
bits number

100

lstat CRT statement bits
number

128

lOCSP r OCSP response bits
number

100

Lh MD5 hash computation
time (inverse of bitrate)

2.2 ns

Lsig RSA-1024 signature
computation time

27 ms

Table 1 - Parameter values used for comparative
analysis of performance



Fig. 4a. CA computational load dependency on
certificate status update frequency .

Fig. 5a. Directory incoming traffic dependency on
certificate status update frequency.

Fig. 6a. Influence of certificates number on directory
computational load.

Fig. 4b. CA computational load dependency on
certificates number.

Fig. 5b. Directory incoming traffic dependency on
certificates number

Fig. 6b. Influence of certificates number on
directory outgoing traffic.
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Fig. 7. Influence of certificates number on user
computational load.
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