
Evaluating Object Oriented Estimation Models
EDUARDO FERNÁNDEZ-MEDINA, MARIO PIATTINI

Departamento de Ingeniería informática.
Universidad Antonio de Nebrija.
C/ Pirineos 55, 28040, Madrid

Tfno: +34 91 452 11 00
Fax: +34 91 311 66 13

SPAIN

Abstract. In this paper some effort estimation methods for object oriented systems proposed in recent years are
summarized. Moreover, we propose a general technique of effort estimation that is applicable to any paradigm of
computer systems. Along these lines the huge importance of good estimation in the first stages of the computer
systems life cycle is justified.

Key-words: Object Oriented Systems; Functional Size; Function Points; Estimation Methods; Measurement;
Estimation; Cost; Effort; Complexity Metrics; Empirical Study.
CSCC'99 Proceedings: Pages 7201-7209

1 Introduction

Projects are often built with a cost higher than the
200% from the budget ([9]). Therefore, an estimation
close enough to the size, the effort and the cost in the
first phases of the life cycle is a fundamental factor in
order to achieve a budget of the system before
constructing it and preparing a temporary planning of
the development activities ([5]). Thus, if the
estimations are good, we can solve the historic
problem of computer science, that is, delivering the
systems in time, and without exceeding the budget
([3]). In ([10]) is mentioned the dangers of using
wrong development cost effort estimation in the
computer systems:

• When a cost estimation is low (infra-estimation)
the directors can approve new projects which will
require more resources (the resources are limited),
so that it will fail the unitary contribution
expected, and finally the estimations will be
doubtful.

• Instead, when there are high cost estimations
(overestimation) , the directors can refrain from
developing new projects and thus have more
benefits. This shows that some unsuitable cost
estimations of an information system may have a
harmful impact in the organization.

As the author points out in ([2]), when the
development advances, the estimations should have a
higher degree of accuracy, because they are building
with part of the system already created.

Traditionally, the analysis of the system functionality has
been used to estimate the effort, that is to say, it has
analyzed the characteristics of the system from the point
of view of what it offers the user ([4]). This can measure
the complexity of certain external factors like departures,
entries and user inquires, and with other internal factors
such as the data stores and the interfaces with other
systems (in Albrecht’s Function Points), otherwise
measuring the input and output transactions, and the
processes (in Mark II’s Function Point). Moreover it uses
certain factors of the technology state and of other aspects
of the future systems. Although these methods certainly
are used successfully for structured developments, they do
not seem entirely appropriate for object oriented systems.
Thus, for example, in ([11]) the author thinks that "it
seems reasonable that in objects oriented systems, the
estimate should be based on the analysis of an objects
model, and not on the traditional criteria for calculations
the function points", because the function points had been
created for other kinds of systems long ago, and perhaps
they can not be adapted to the new technologies, and thus
create a considerable error in such estimates.

In the following paragraphs, we give a summary of the
present-day techniques of effort estimation for object
oriented systems.

2 Estimation by analogy

This model is applied to the beginning of the developing
life-cycle, when only the requirements of the system are
available to us. The object oriented concepts have not

been applied to the system so far, so that we can use
this method in a project developed with any traditional
or object-oriented methodology.

Since we have only the system requirements, the
estimates will have a big margin of error, but it can
help us know the wingspan of a new system.

In order to be able to apply this technique, we must
have a spacious base of projects. This approach allow
us to realise estimations of the size and effort when we
have only the system requirements, but such an
estimate will be only an aid, because we are based on
unstable data like the system requirements.

As is indicated in ([2]), this approach consists of the
following steps:

[1] The system is divided in several independent parts
of relatively small size.

[2] We compare the divisions made with other already
existent system divisions. We will compare certain
parts of the new systems with parts of varied
already existent systems. It is possible that we
have other parts that are not covered by any of the
existing systems. All the possible combination
divisions are:
a) Zone covered by an already existent system.

This division will be compared to an already
constructed system.

b) Multiple covered zone. This area can be
compared to certain parts of already created
varied systems.

c) Non-covered zone. There is no system that can
help to estimate this zone.

[3] The size of the new system proposed is
determined. The size will be estimated in function
points, and the result will be the sum of the size
estimation for each of the parts of the system.

Estimation of the size =
Sum of the estimated size of each part

covered by only one existent system +
Sum of the estimated size of each part

covered by different existent systems +
Sum of the estimated size of each part

covered by no existent system

We are going to see how we can realize these
estimates:
a) Zone covered : It estimates with the function

points amount of the already existent system
corresponding to the percentage of the covered
zone.

b) Multiple covered zone: We estimate the size realizing
the average of the sizes estimated by each existent
system.

c) Non-covered zone: This estimate must be realized
only when has been estimate the zone covered. If the
covered percentage is P%, the non-covered is Q%
(P+Q=100) and Z is the amount of function points
estimated for the covered zone, the resulting to
estimate the covered zone will be (Z/P)*Q.

Consider the example of figure 1, where a new system
can be covered for other systems that already have been
constructed, and its size in function points is known.
• Estimate of the zone covered (solely) by A.

10% of A à 1000 FP.

• Estimate of the zone covered (solely) by B.
20% of B à 1500 FP.

• Estimate of the zone covered by C.
30% of B à 1500 FP.

• Estimate of the multiple covered zone.
10% of A à 1000 FP.
20% of B à 1500 FP.

 2500 FP / 2 à 1250 FP

• Estimate of the zone covered by no system.
65% of the system supposes 1000 + 1500 + 1500 +
1250 = 5250 FP.
Then 100% supposes 8077 FP.
Then, the non-covered part, the 35% supposes 2827
FP.

• Estimate of the complete system.
It is the sum of the estimates for the covered and non-
covered zones: 3450+1150 = 4600 FP.

Figure 1. Example of parts of a system.

After the size of the new system has been estimated in
function points, we must express the size in terms of
development effort and cost. This can be done through
techniques of regression that relate the size in function
points with effort and size with development cost.

In ([2]), the author proposes a modification of this
technique, that is, instead of estimating the size in
function points, estimating directly the effort or the
development cost. We can do it considering, instead of
the function points of the already existent systems, the
effort that has been necessary to construct it. So we
would realize the same process as before, and we will
obtain the result in effort units.

2.1. Strong and weak points of the method of
estimation by analogy

This estimation technique of function points has the
following weaknesses: The requirements must be very
complete and well specified, the comparison between
a system and parts of other systems is very ambiguous
and the technique does not contemplating the reusing.

Among the more favourable factors, we show the
following: It obtains estimates of the functional size of
the system very soon, and with very little cost and
realizing the divisions, and comparing with other
systems divisions already created, we can see what
parts of the system can be reused.

3 Estimation through "Object Points"

Traditionally, the way for system sizes have been
estimated through analysis of the functionality that the
system contributes to the user and through empirical
estimations of the source lines of code of the final
product. Although the function point analysis can be
appropriate, techniques of estimation created explicitly
for the object oriented paradigm should be used ([11]).

Regarding the source lines of code, it is necessary to
mention that although it is a very utiliced estimating
method, it has certain problems with the estimates
realized. One of the most important problems of the
source lines of code is cited in ([1]): «The software
involves a huge percentage of the fixed cost that is not
depending on the code. The more powerful the
programming language is the less SLOC are needed,
but the requirements, specification, documentation and
other elements tend to have fixed costs. This mean that
the SLOC as measures of systems size is incorrect
because we are measuring the global size in function

of the only size of a phase of the development, and besides
that is very unstable». This problem is bigger with object
oriented systems, as the phase of encoding has less weight
in the development because systems dedicate more effort
to the analysis and design phases, with the purpose of
obtaining most robust systems with lesser maintenance
cost. In ([12]) is confirmed this, denoting that the measure
of the code lines to measure the size of object oriented
systems is not appropriate, because there exists a
displacement of personnel, that in traditional systems was
dedicated to encoding work, whereas the object oriented
systems are devoted to analysis tasks. Therefore, as in
([11]) is indicated, the orientation to objects has obliged
developers to readjust their thought in diverse aspects,
and particularly, they have had to change the form of
measuring and the form of estimating certain
characteristics of these systems.

Now, i am going to describe metrics called "object points"
that combine some of the characteristics of the metric
oriented to functionality and oriented to source lines of
code:
• Like lines of code, the object points have large

correlations with the effort, and their calculation can
be automated from the product after the project has
finished.

• Like the function points, the object points incorporate
an understanding of the product behaviour, and they
offer the appraisal of the system from the user’s point
of view.

3.1. Foundation of the objects points metric

The first thing to see how we can estimate the object
oriented system size will be to examine the metrics that
are available, and observe if they are useful in some
aspects. We can see in figure 2 the relationship between
the form of obtaining function points (Mark II) and the
form of obtaining object points.

The object points combine several metrics that have
already been analyzed and proclaimed in the existing
bibliography, like ([7]) or ([6]). The metrics that interest
us must be estimated early in the development. The only
ones that carry out that property are those that analyze the
structure of the classes and the structure of the
associations between them. The measures that in ([11])
are considered are the following: Number of top level
classes (TLD), Weighted methods per Class (WMC),
Average depth of class in hierarchy tree (DIT) and
Average number of children per class (NOC).

We can see an example of calculation of those metrics in
Figure 3.

OO Analysis

User
Requirements

Structured
Analysis

Classes of Objects:
Properties
Behaviors

Data Transactions

Function Points

PRICE Object
Points

1.- Identify objects.
2.- Group objects into classes.
3.- Understand relationships
 between classes of objects.

1.- Identify logical data groupings.
2.- Identify elementary processes.
3.- Identify similarities, diferences between
 similar transactions.

Figure 2. Procurement of Function Points and Object
Points

Now it is necessary to establish a procedure to assign
complexity to the methods. In order to do so, we can
distinguish the following kinds of methods:
Constructors, destructors, modifiers, selectors and
iterators.

A

B C

D

E F G

H I

J

TLD= 3
AvgDIT= (1*3+2*9+3*2+4*1)/10=3,1
AvgNOC= (2+3+2+1+4)/5 = 2,4

K

L M N Ñ

Figure 3. Ejample of calculation of metrics.

We will distinguish three kinds of categories in
function of the complexity: low, medium and high.
Thus we can assign complexity ranks for each kind of
method (constructors, destructors, modifiers, selectors
and iterators) and so calculate the WMC based on that

complexity. Also it is necessary to establish some rules to
calculate the parameters number and properties implicated
in the method.

Once we have arrived at this point, the Object Point
metric is formed in function of the preceding metrics. For
the calculation of the object points is important to take
into account that the principal metric is WMC.

The way to calculate the object points is the following:

NumberClass= TLC + TLC*((1+NOC) * DIT)1,01

+ ABS(NOC - DIT)0,1

UnadjustedOP= NumberClase*WMC
OPAdjusted= f(NOC,DIT)
OPs=UnadjustedPO*(1+AdjustedOP)

We can see that the object point adjust is in function of
two metrics. An experiment achieves the next index:

f(NOC,DIT)
NOC / DIT 0-2 3-5 5-

0 0 8 12
1-4 5 10 15
4- 14 17 20

The problem is that this technique is too new, and there is
not sufficient data we can take as reference.

3.2. Limitations of the objects points

There are certain aspects of much importance that in
([11]) are not considering, or are not addressing in an
‘appropriate’ manner in the calculation technique. These
aspects are the following: The reuse of already created
components is not considered and the calculation
technique leans completely upon one index that can mark
the estimation, and that can make the estimations
unstable.

One possible solution for the first problem can consist in
the employment of the metrics in a separate way, that is to
say, to obtain some metrics TLC1, WMC1, DIT1 and
NOC1 for all the non-reuse components, and other
metrics TLC2, WMC2, DIT2 and NOC2 for all the reused
classes. Afterwards, we can obtain OP1 and OP2 like this:

OP=OP1 + r*OP2.

For the total calculation, we must bear in mind a) the
object points associated with the non-reused classes, and
b) the object points associated with the reused classes
multiplied by a factor r (r<1), because these classes will
have analysis, design, maintenance, and integration costs,
but they do not have encoding cost. The factor r would be

calculated empirically from a previously built historic
base of projects with reused classes and non-reused
classes.

In the calculation of the object points we use a
function which depending of the worth of NOC and
DIT, returns us a complexity factor that will be
multiplied by the unadjusted object points. These
values have been obtained by some empirical proofs
and are in principle applicable to any environment. A
feasible solution consists in applying a multilineal
regression method with which we obtain the best
values for the index. For this, it is necessary to have a
big data base, so that those values can be reliable.

4 Estimating of Effort for Object
Oriented Systems

In ([12]) is affirmed it is necessary to have new
metrics to measure object oriented systems aspects,
and presents new size and complexity measures to
evaluate and predict the effort of development. This
author assumes that the complexity and the size are
significantly related to the effort also in the object
oriented systems. In order to analyze the complexity
and the size we consider three levels: methods, classes
and system. For each level, he defines metrics
according to other low level metrics.

4.1. Levels in the method metrics
An improvement refereed to traditional metrics is also
consider the method interface complexity/size,
namely, the complexity or size of the parameter list of
the methods. The reason for which it adds complexity
or size aspect to the methods, is that they can be
effective to evaluate the adoption and reuse cost, and
to predict the implementation cost. The method
complexity is defined in this way: MCm=WMICm MICm

+ Wmm

Where: WMICm and Wm are weights that depend on the
metrics adopted, MICm is the complexity of the
method interface and m is the metric adopted by the
method evaluation. It can be one of the already known,
like the MacCabe’s cyclomatic complexity (m=Mc), of
the number of source lines of code (m=SLOC) of
Halstead’s metric (m=Ha) of Nesi and Querci’s metric
(m=MS).
The weights are obtained by applying measures
through the validation process that present different
values in different phases of the life cycle (evaluating
a set of similar projects). MICm is a forecast factor, as
it contributes information when we only have a

method prototype. MICm is estimated to take into account
the sum of the complexity and size of each method
parameter.

Then, there are some method complexity metrics in
function of the basic metric than we use. Thus, the metric
MCm is more complete than a simple size or complexity
metric. Obviously, these metrics can be useful also to
obtain better non-object oriented system evaluations. The
defined metrics are MCMc, MCSLOC, MCHa and MCMS.

4.2. Levels in the class metrics

Using the MCabe, Halstead and SLOC metrics, the
definition of the complexity or size for each class in
function of the methods that it has is immediate. With
traditional systems (non-object oriented) this metric is
defined like this:

 NM

CMm= Σm(i)
 i

Where NM is the ethod number by class and m is the base
metric that we use.
 This way, we define the class metrics: CMMc, CMHa y
CMSLOC.In the literature, it has been demonstrated that
CMm is not appropriate to evaluate object oriented
projects, since it does not consider object oriented aspects.
In function of MCm it has defined the next metric: Class
method complexity:

 NM

CMCm= ΣMCm(i)
 i

 This metric solely contemplates the complexity of the
class methods. It also can be expressed like this:

 NM NM

CMCm=WMICmΣMICm(i) + WmΣm(i)
 i i

This metric is able to obtain estimations before the class
implementation is available. This is due to the existence
of the MICm metrics. The problem is that these metrics do
not contemplate object oriented aspects yet, and we must
consider both attributes and methods, both inherited and
locally defined. These factors must be considered in order
to know the cost or gain of the inheritance.
The class complexity is defined like this: CC=CCL+CCI
Where CCL corresponds to class local complexity, and
CCI corresponds to class inheritance complexity, and
through these metrics we must express the attributes and
methods complexity, both local level and inherited. Thus,
class complexity can by expressed in this way: CC=
wCACLCACL + wCMCLCMCL + wCACICACI + wCMCICMCI
Where CACL corresponds to class complexity by local
attributes, CMCL corresponds to class complexity by

local methods, CACI corresponds to class complexity
by inherited attributes and CMCI corresponds to the
class complexity by inherited methods.These weights
will be obtained through a multilinear regression
analysis where we know class effort. In normal
situations, the class complexity weights or coefficient
by inherited attributes will be negative, since
inheritance of attributes mean less system complexity
or size, and then less effort.
We can express CACL and CMCL like this:

 NAL NML

CACL=ΣACi CMCL=ΣMC(i)
 i i

Where NAL and NML are the local attribute number
and local method number respectively. It is able to
define in an analogous way CACI and CMCI. If we
generalize for any of the already known metrics, we
can have the following: CCm= wCACLmCACLm +
wCMCLmCMCLm + wCACImCACIm + wCMCImCMCIm

It has defined a set of metrics that will have some
weights in function of the base kind of metric that we
utilize. The defined metrics are: CCMc, CCHa, CCLOC
y CCMS.

4.3. Level in the system metrics
We can consider several levels within the system: a set
of classes organized in one or varied class trees, a set
of procedures and functions in C++, a set of global
definitions of types, structures, etc. and a set of
variable declarations.
In the same way, we can define metrics for each level.
The defined metrics are: NCL (number of system
classes), NSF (number of system
functions/procedures), NGD (number of global
definitions), MGV (number of global variables), Etc.

The system complexity is defined in the following
way:

 NCL NSF NGD NGV

SCm=wCCmΣCCm(i) + wFCmΣFCm (i) + wGDCmΣGDCm(i)+wGVCmΣGVCm (i)
 i i i i

Where FCm, GDCm y GVCm are complexity/size
metrics that measure non-object oriented aspects,
namely, functional aspect, global definitions and
variables declarations respectively. Then, SCm is
precise equation of the system complexity from all the
aspects, functional, data, object oriented relationships,
contrarily to the reverse that the traditional metrics.

4.4. Limitations of the estimation system
A set of general metrics is offered, namely, equations
that are in function of some weights, and these weights
depend on the base metrics that we use and of the

environment, that is to say, of the set of projects used to
realize the multilinear regression analysis. Because of
this, every time we want to use this prediction system, we
must obtain a value for all the weights realizing a
regression analysis with data of the specific environment.

5 Effort Parametric Estimation: An Object
Oriented Model
This technique is oriented to the estimating of the
development effort for traditional systems transforming
the analysis documentation in an object oriented model,
expressed in natural language. Therefore, this technique is
easily extensible to systems whose requirements analysis
has already been constructed with an object oriented
methodology.
In ([8]) it is demonstrated that the development effort can
be forecast during the conceptualization of a system using
parametric analysis. Using an abstract object oriented
description of software, it is possible to develop an
empirical model of the software, that is useful for much
phases of the development. The parametrical model has
operations and interfaces that are extracted from a high-
level description of the system. Several functional
formularies of the estimations were developed and
evaluated harmoniously.
Of all the models utilized, it was found that with simple
models of regression, using the object variable
transformed exponentially, behaved much better than any
others.

5.1. Introduction
The objective of the author in ([8]) is to examine the
possibility of identifying cost estimate parameters from an
abstract description of information systems. An
estimation model based on an abstract description of the
systems can be used to plan the develop and control
process. An abstract model derived from an object
oriented frame was treated to identify system
characteristics that are able to have a direct relation with
the development effort. The variables considered were
only those measurable in the first stages of the
development.

5.2. Methodology
The process consists in the use of regression analysis to
discover empirical relation between systems characteristic
and their costs. If the relation can be demonstrated, then it
is possible to use those characteristics as parameters in a
cost estimation model.
A lot of the present-day estimation techniques are non-
parametric, and require the estimation of the number of
lines of code to predict the time required to complete the
project. Then, if we must estimate first the lines of code

and then use this estimation to calculate the effort, we
are charging with a high degree of error. The
parametric models are less frequent, and the more
important example of parametric model used for the
estimating of the development effort is the function
points analysis (FPA).

5.3. An abstract model of software
development effort
This method attempts to extract effort estimation
metrics in the first phases of the life-cycle. The
principal difference between this model and the
function points model is that the first one is most
abstract than the function point model.
An object oriented model of a system is composed of
objects, interfaces and operations between those
objects. These components are abstractions of real
world objects, operations and interfaces.
It seems reasonable that the development effort to
create a system is in function of the objects, operations
and interfaces number that compose the system: Man
hours = f(objects, operations, interfaces).
The main advantages of the employment of this
approach of object oriented effort are:
• An object-oriented model is an objective

representation of the proposal system.
• An object-oriented model promotes a better

understanding of the system, by using a
methodology for articulating system functions and
requirements.

• The model can be built in different levels of
abstraction. When the system is in the conceptual
stage, it can be viewed at a high level of
abstraction. As development progresses, the
systems are expressed with increasingly lower
levels of abstraction, and the cost analysis can be
refined.

• The model does not suggest a particular
implementation of the system.

• It may be possible to integrate an object-oriented
cost estimation approach with advanced system
design and development object oriented
methodologies.

5.4. Election of the kind of model
There is a theory that indicates that this produces a
deseconomy of scale in the software development
effort. This means that when the number of objects is
raising, the effort is raising with a bigger proportional
factor. This is because, if the project size is increasing,
then the time necessary to interface, integration and
proofs will be bigger to.

Therefore, although the first focus will consist in the
employment of a non-linear model, we will use a linear
analysis to begin with.

5.4.1. Results for linear model
The linear effort model in function of the objects number,
the operations number and the interfaces number is the
following:

Hours = B0 + B1*OBJ + B2*OP + B3*INT + e
Where: Hours = Duration of the programming task, OBJ
= Number of distinct objects identified with the
programming task, OP = Number of distinct operations
identified with the programming task, INT = Number of
distinct interfaces identified with the programming task
and e = random error associated with the model.
When the regression analysis was made, the results
obtained with this model were satisfactory. We also
analyzed a linear model with only the objects number:

Hours = B0 + B1*OBJ + e.
By chance, the results obtained were better with the
reduced model than with the complete model.

5.4.2. Results for nonlinear model
There are three no linear models, logarithmic, semi-
logarithmic and exponential. The better results were
obtained from the exponential model, which is formulated
with the following equation: Hours = B0 + B1*eOBJ +
error.

The results confirmed the theory of the existence of a
scale deseconomy in the effort estimation in function of
the objects number. This indicates that the more
appropriate model is a non-linear model.

5.5. Conclusions
The results of this study show that it is possible to base
forecasts of programming effort on a very abstract object
oriented model of the system. The exponential model
exhibits the best fit and accuracy of all the models.

5.6. Limitations
It is necessary to have precaution in generalizing this
results to other data sets. The models developed in this
study would probably require further re-estimation in
order to be used in other settings and for larger projects.

6 Method of effort estimation based in
«Effort Point»
The technique presented in this paper is based on the
thought of the author of ([11]) and in the method of
parametric estimation offered in ([8]). This is a general
technique that tries to estimate the development effort or

cost in object oriented systems using a general formula
adaptable to any particular environment.
The idea is not to estimate the objects points (or
function points) to transform them in effort or cost
(commiting two errors, in the moment of calculating
the object or function points, and next when we
estimate the development effort), but that we will
estimate directly the data that really interests us, that is
to say, the development effort. This way, the concept
of functional size disappears as such, ceasing to be
used as an unit of measure function points or object
points, and proceeding to measure the system size as
the effort necessary to realize it, that is, a concept
highly correlated with the function points (although on
some study cases ([4]) have not been able to confirm
the existence of such a correlation).

In this case, the measure of estimation will be the
effort points, that consist of each unity of people-
month of work in the development of a system. The
formula to expound will relate all the outstanding
metrics discussed in the paragraph 3, but further
testing is needed to retain the better model. There are a
lot of models, linear and nonlinear. A linear model can
be the next: Efforti = A*NumberClassi + B* WMCi +
C*NOCi + D*DITi + errori

This is a model that supposes a linear relationship
between the metrics utilized and the effort realized to
construct an information system. In the formula there
appear a series of unknown variables, that is necessary
to know (A, B, C, D and errori). The form of knowing
these unknown variables consists in applying a
resolution method of equation systems where there is
an equation by each project already created, otherwise
in applying directly a multilinear regression analysis,
where we obtain the correlation index, and moreover
the variance of the variables.
 We can also consider the theory exposed in ([8])
about the deseconomy of scale, then we must consider
several nonlinear models like these:
Effi = A*NClassi

D + WMCi
E (B*Noci + C*DITi)

F +
erri

Effi = A*NClassi * WMCi * (Noci*DITi)
D + erri

In principle, we need various models to realize some
proofs, and thereafter adapt the model that produces
less error in the estimations, and therefore, with the
model that produces better correlation between the
metrics and the real effort. As the equation system can
not be linear, we can utilize some technique of
approximation (like the genetic algorithms or the blind
search), in such a way that we obtain the unknown
variables by minimizing the sum of the error charged
in all the equations.

Until now, we have the deduced mystery variables, and
we can apply the formula to the data of the new system, to
obtain a nearness of the system effort. Besides, by using
the error charged in the equations, we can have a nearness
of the maximum error that we charge with ours
estimation. As soon as we finish the construction of our
system we already know the necessary real effort. Then,
those data will form part of the equation system, and will
permit further refinement of the calculation of the
unknown variables for the estimation of the effort of
future projects.

Example
We suppose that we have a data base with relative
information about 6 already realized projects, and we
know both effort and the characteristic parameters of the
object oriented paradigm, and now we are beginning to
construct a new system. We would like to obtain an
estimation of the effort, and therefore of the cost of the
new system.

Number
Project

Effort Number
Class

WMC NOC DIT

1 690 34 6 0 3
2 730 35 4 2 2
3 495 22 8 0 2
4 1820 87 5 1 6
5 850 42 2 1 3
6 765 37 6 2 2
7 ¿¿¿??? 58 10 2 3

If we consider a linear model, we can build an equation
system with a model like this:
Effi =A*NClassi + B*WMCi + C*Noci + D*DITi + erri

In this case, the equation systems is the next:
690 = 34A + 6B + 0C + 3D + Error1

730 = 35A + 4B + 2C + 2D + Error2

495 = 22A + 8B + 0C + 2D + Error3

1820 = 87A + 5B + 1C + 6D + Error4

850 = 42A + 2B + 1C + 3D + Error5

765 = 37A + 6B + 2C + 2D + Error6

The first step will consist in obtaining a solution (or a
nearness to the solution) of this equation system, and then
build an estimation model. For example, if the better
solution to this system consists the following values:
A=20, B=5, C=0.5 and D=0.5, we can appreciate that the
values of the errors is the following:

|Error1|=21.5 |Error2|=8 |Error3|=14
|Error4|=51.5 |Error5|=2 |Error6|=7

Then, we would obtain two important things:
a) An estimation model: Efforti = 20*NumberClassi + 5*

WMCi + 0.5*Noci + 0.5*DITi + errori
b) An estimation of the maximum error that are able to

be charged with.
With those data we can already realize the estimation of
the project that we are constructing. We are substituting
the project data in the forecast model: Effort = 20*58 +
5*10 + 0.5*2 + 0.5*3 + error = 1212,5 + error.

Therefore, we can think that the effort will be
approximately 1212.5 and with an error margin
between –50 and +50.

7 Conclusions

In this paper an overview of several effort estimation
methods for object oriented technology has been
presented. Nowadays, the principal effort estimation
method is FPA, but the trend is to extend this method
or create new ones that will make suitable the new
characteristic of the new development methodologies.

Further investigation is necessary to create new
methods of estimation for the new technologies and to
validate recent estimation methods that are not
consolidated so far. We must carefully collect data
from OO projects in order to improve and calibrate
these estimation methods.

8 Bibliography
[1] Bolk, F. (1998) Function Point Analysis and Data

Warehousing. Proceeding of the ORACUG User
Group Conference. Viena, 21-24 April 1998.

[2] Catherwood, B. AND Gupta, M. (1998) Life-Cicle
Estimation for Object Oriented Systems.
Prediction by Analogy. Proceeding of the
FESMA98 Conference, 6-8 May 1998.

[3] Crosstalk, (1998) The Journal of Defense Software
Engineering. Software Metrics Capability
Evaluation, Metodology and Implementation.
Http://stscols.hill.af.mil/crosstalk/1996/jan/metrics
.html. May 1998.

[4] Dolado, J.J. (1997). A study of the Relationships
among Albrecht and Mark II Function Points,
Lines of Code 4GL and Effort. J. Systems
Software, 1997, nº 37, p 161-73. New York:
Elsevier Science Inc.

[5] Fenton, N.E., Iizuka, Y. and Whitty, R.W. (1995).
Software Quality Assurance and Measurement: A
Worldwide Perspective. London: International
Thomson Computer Press.

[6] Hateras Software, inc. (1998) OOMetrics.
Http://www.hatteras.com/metr_des.htm. May
1998.

[7] Henderson-Sellers, B., (1996). Object-Oriented
Metrics: Mesures of Complexity, Prentice-Hall.

[8] Jenson, R. And Bartley, J. (1991). Parametric
Estimation of Programming Effort: An Object-
Oriented Model. J. Systems Software. 1991, 15,
pp. 107-114.

[9] Kemerer, C. (1993). Reliability of Function Point
measurement. Communications of the ACM .
February 1993, Vol 36, Nº 2, pp. 85-97.

[10] Leader, A. y Prasad, J.(1992). Nine Managemente
Guidelines for Better Cost Estimating. Comunications of
the ACM. February 1992. Vol 35, Nº 2. PPs 51-59.

[11] Minkiewicz, A. (1998) Estimating Size for Object-
Oriented Software.
Http://www.pricesystems.com/foresight/arlepops.htm
. June 1998.

[12] Nesi, P. And Querci, T. (1998). Effort estimation and
prediction of object-oriented systems. The Journal of
Systems and Software, 42, pp. 89-102.

