
Explicit A-stable Runge-Kutta methods for linear
Stiff-Equations

By Masaharu Nakashima
Department of Mathematics, Faculty of Science, Kagoshima
University Korimoto cho 21-35, Kagoshima city 890, Japan

Key word: Runge-Kutta methods
Subject Classification 65L06,65L07

Abstract

Some Runge-Kutta type methods of order 1 for
solving Stiff-Differential Equations are present. Sta-
bility analyze of the methods for 2-dim and general
linear system differential equations are given. It is
shown that the methods presented are suitable for solv-
ing stiff-equations. Some numerical test justifying the
results are presented.

1 Introduction

During the last years, there has been a consider-
able amount of research on the numerical integration
of stiff systems of ODE’s. A basic difficulty in the
numerical solution of stiff systems is the satisfying of
the requirement of stability. J.C Butcher [1] provided
Implicit Runge-Kutta methods(abb;R-K methods) to
overcome the stability problem. However for solving
the stiff equations by using explicit methods, Lambert
[2,3], Shaw[3] and many scholars have studied and pro-
posed explicit type methods imposing stability condi-
tions. Hairer [4] has proved instability of higher or-
der(more than three) rational R-K methods proposed
by Wambecq [9]. In the previous papers [5,6,7], the
author proposed the rational coefficients explicit R-K
methods for solving system of stiff equations. However,
stability analysis in general differential systems equa-
tions was not given. The discussion of stability analysis
of rational coefficients formulas for system equations is
quite difficult. In this papers,using the same method
for deriving rational coefficients methods which was
proposed in [6,7,8] , the author propose the rational
coefficients algorithms of order 1 and studies the sta-
bility analysis for 2-dim and general system differential
equation;

The outline of this paper is as follows; In § 2, we
consider first order two stage rational coefficients R-
K methods for 2-dim linear differential equation and

study stability of the methods, in § 3, we propose the
numerical methods for general linear system of differ-
ential equation and study the stability of the proposed
methods. In § 4 , some numerical tests justifying the
results are present.

2 Derivation of Methods for 2-
dim linear differential equa-
tion of the first order

We study the numerical solution of the following 2-dim
linear differential equation,

Ẏ = AY,

A =
(

a b
c d

)
, (a, b, c, d ∈ R) (2.1)

where the matrix A has the eigenvalue with negative
real.

We consider the following first order R-K formulas
for solving (2.1),

1yn+1 = 1yn + h 1k1 − h2
2∑

j=1

1dj ,

2yn+1 = 2yn + h 2k1 − h2
2∑

j=1

2dj ,

1k1 = 1f(xn,1 yn,2 yn),
2k1 = 2f(xn,1 yn,2 yn), (2.2)

where

1f(xn, 1yn, 2yn) = a 1yn + b 2yn,

2f(xn, 1yn, 2yn) = c 1yn + d 2yn,

1d1 =
aL1

1 + hL1

1yn, 1d2 =
bL1

1 + hL1

2yn,
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2d1 =
cL1

1 + hL1

1yn, 2d2 =
dL1

1 + hL1

2yn, (2.3)

and L1 is the constant depending on the eigenvalue of
the matrix A.

Introducing the vector notations,

Yn = [1yn,2 yn],

(2.2) becomes

Yn+1 = B1Yn,

B1 = (I +
h

1 + hL1
A). (2.4)

We study the conditions where the error of numerical
processes (2.4) will grow with n or not. We define the
following stability definition.

Definition; The numerical processes {Yn} of (2.4) is
stable if the absolute value of the eigenvalue of B1 are
less than one.

We will see that, as n increases,the numerical process
Yn tends to zero if and only if the absolute value of the
spectral radius of B1 is less than one. We assume that
the matrix A is normalizable,

TAT−1 = diag{λ1, λ2},
by means of a nonsingular matrix T .

Setting
Zn = TYn, (2.5)

(2.4) becomes

Zn+1 = (I +
h

1 + hL1
Λ)Zn,

Λ = diag{λ1, λ2}, Zn = [1zn,2zn],

or

izn+1 = (1 +
h

1 + hL1
λ)i zn, (i = 1, 2) (2.6)

and,so,the eigenvalues of B1 are given by

ρi = 1 +
hλi

1 + hL1
. (i = 1, 2) (2.7)

Putting

λj = αj + βj i, (αj < 0, βj ∈ R). (j = 1, 2) (2.8)

(2.6) becomes

(1 +
αih

1 + hL1
)2 + (

βih

1 + hL1
)2 < 1, (2.9)

or

h

(1 + hL1)2
{2αi(1+hL1) + (α2

i + β2
i )h} < 0. (i = 1, 2)

If we set,

L1 ≥ − 1
2αi

(αi
2 + βi

2). (i = 1, 2) (2.10)

Then the stability condition (2.9) is satisfied. Using

αi =
(a + d)

2
,

αi
2 + βi

2 = ad − bc,

(2.10) reduces to

L1 ≥ −(ad − bc)
a + d

. (2.11)

Summing the results, we have the following results.

Theorem [1]. Let the matrix A in (2.1) be a
normal matrix and the real part of eigenvalues of A is
negative. If we set L1 in the form (2.11). Then the
numerical processes (2.2) is stable.

Let us consider the real case in (2.8), putting βi = 0
leads to

L1 ≥ −1
2
αi,

and using the relation,

α1 + α2 = −T r(A),

we have the following corollary.

Corollary [1] If the matrix A have only real and neg-
ative eigenvalues. Let

L1 =
1
2
Tr(A). (2.12)

Then numerical processes (2.4) is stable (A0 stable).

3 Numerical integration for s-
systems linear equations of
the first order

In this section, we consider numerical integration for
s-systems linear differential equation,

Ẏ = ÃY, (3.1)

Ỹ = (1y, 2y, ..., sy),

where Ã is the constant s × s matrix which has the
eigenvalue with negative real real.

We consider the following first order R-K methods
for solving (3.1).

iyn+1 = iyn + hik1 − h2
s∑

j=1

idj ,
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ik1 = if(xn,1 yn,2 yn, ..,s yn),

idj =
aijL̃1

1 + hL̃1

. (i = 1, 2, .., s) (3.2)

Introducing the vector notations,

Ỹn = (1yn, 2yn, ..., syn),

(3.2) becomes
Ỹn+1 = B̃1Ỹn,

B̃1 = (I +
h

1 + hL̃1

Ã). (3.3)

We assume that the matrix Ã = (ai,j) is normalizable

T̃ ÃT̃−1 = diag{λ̃1, λ̃2, λ̃3, .., λ̃s},
by means of a nonsingular matrix T̃ .

Proceeding in a similar way as §2, we set Z̃n by

Z̃n = T̃ Ỹn.

Then (3.3) becomes

Z̃n+1 = (I +
h

1 + hL̃1

Λ̃)Z̃n, (3.4)

Λ̃ = diag{λ̃1, λ̃2, .., λ̃s},
Z̃n = [1z̃n,2z̃n, ..,sz̃n],

or

iz̃n+1 = (1 +
h

1 + hL̃1

λ̃)
i
z̃n, (i = 1, 2, .., s) (3.5)

and so the eigenvalues of B̃1 are given by

ρ̃i = 1 +
hλ̃i

1 + hL̃1

. (i = 1, 2, .., s) (3.6)

Setting
λ̃j = α̃j + β̃ji. (α̃j , βj ∈ R) (3.7)

(3.7) reduces to

(1 +
α̃ih

1 + hL̃1

)2 + (
β̃ih

1 + hL̃1

)2 < 1,

or

h

(1 + hL̃1)2
{2α̃i(1 + hL̃1) + (α̃2

i + β̃2
i )h} < 0.

(i = 1, 2, .., s) (3.8)

Therefore, let

L̃1 ≥ − 1
2α̃i

(α̃2
i + β̃2

i ).(i = 1, 2, .., s) (3.9)

Then the numerical processes (3.4) is stable.

We study L̃1 of (3.9) in more detail, firstly we con-
sider the case λ̃i ∈ R(i = 1, 2, .., s).

Case (I). β̃i = 0(i = 1, 2, .., s).
Putting β̃i = 0 in (3.9), we find

L̃1 ≥ −1
2
α̃i. (i = 1, 2, .., s) (3.10)

From the assumption α̃i < 0 (i = 1, 2, .., s), we have

Tr(A) ≤ Re(λ̃i). (3.11)

Therefore, let

L̃1 = −1
2
Tr(A). (3.12)

Then L̃1 satisfies the condition (3.10). Summing the
results, we have the following results.

Theorem [2]. Let Ã be normal matrix whose
eigenvalue are real and negative. Let

L̃1 =
−1
2

Tr(A).

Then the numerical processes (3.2) is stable.

Secondly we study the stability conditions when
λ̃i(i = 1, 2, .., n) are complex .

We use the following Schure’s inequality theorem.
Theorem (Schure’s inequality). Let

λ1, λ2, ..., λn be eigenvalues of n × n matrix Ã, then

s∑
j=1

|λj |2 ≤ ‖Ã‖, (3.13)

where ‖.‖ denotes the euclidean matrix norm.

We consider the case Re(λ̃i) < 0.
Case (II) Re(λ̃i) ≤ −d (d > 0), β̃i 6= 0.

(i = 1, 2, .., s)(3.14)

We have

−1
2α̃i

(α̃2
i + β̃2

i ) ≤ 1
2d

(α̃2
i + β̃2

i ). (3.15)

From (3.13) and (3.15), we have the following theorem.

Theorem [3]. We assume that the matrix Ã is
normal and the eigenvalue of Ã satisfy (3.14). Let

L̃1 =
1
2d

‖Ã‖.

Then the numerical processes (3.2) is stable, where ‖, ‖
is the euclidean norm in Rn.
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Lastly , we study stability when the eigenvalues of
Ã satisfy

|π − argλ̃i| ≤ α, (i = 1, 2, .., s) (3.16)

which implies

Im(λ̃i)
Re(λ̃i)

≤ tanα, (3.17)

and so,we have

α̃2
i + β̃2

i ;≤ α̃2
i (1 + tan2α), (3.18)

which leads to

−1
2α̃

(α̃2
i + β̃2

i ) ≤ −1
2
(1 + tan2α)|α̃i|. (3.19)

From (3.9) and (3.19), we have the following theorem.

Theorem [4]. We assume that the matrix Ã is
normal and the eigenvalue of Ã satisfy (3.16). Let

L̃1 = −1
2
(1 + tan2α)Tr(A).

Then the numerical processes (3.2) is stable.

4 Numerical Example

Using the numerical process (3.2), we present some
numerical tests to sure the results derived in this pa-
per. We consider the simple hyperbolic initial bound-
ary problem which is taken from Richtmyer and Mor-
ton [8],

ut + ux = 0, 0 < x ≤ 1, t > 0,

u(0, t) = 0, t > 0,

u(x, 0) = sin(πx), 0 ≤ x ≤ 1.

Here the interval [0,1] is divided into m equal subin-
tervals of length 4x = 1

m and

{xj ; xj = j 4 x, j = 1(1)m}.
We approximate ux by

ux|x=xj =
(uj − uj−1)

4x
,

where uj(t) ∼= u(xj , t) denotes the continuous time ap-
proximation evaluated at xj . The continuous time grid
function U = [U1, U2, ..., Um] satisfies the semidiscre-
ate problem,

U̇ =
AU

4x
,

A =




−1 0 0 .. 0
−1 1 0.. 0

.. .. .. .. ..
0 0.. −1 1 0
0.. .. .. −1 1


 .

All eigenvalues λ are equal to

λi[A] = −1.

Its theoretical solution is

u(x, t) = sin((x − t)π.

We use the scheme (3.2) with (3.12).
A calculation are shown in TABLE I, II,III,IV.

TABLE

The data are the absolute error of numerical
solution with step size

τ =
1

100
, 4x =

1
10

,
τ

4x
=

1
10

,

x 1
10

3
10

5
10

t 0.1 -0.603E+0 -0.211E+0 -0.221E-1

t 0.5 -0.953E+0 0.647E+0 0.279E+0

t 0.7 0.951E+0 -0.965E+0 -0.693E+0

t 0.9 -0.587E+0 -0.954E+0 -0.984E+0

x 7
10

10
10

t 0.1 0.938E-1 0.132E+0

t 0.5 0.147E-1 0.191E+0

t 0.7 -0.329E+0 0.101E+0

t 0.9 -0.735E+0 -0.182E+0
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τ = 1
50 , 4x = 1

10 , τ
4x = 1

5

x 1
10

3
10

5
10

t 0.1 -0.103E+0 0.185E-1 0.374E-1

t 0.5 -0.953E+0 -0.656E+0 -0.315E+0

t 0.7 -0.951E+0 -0.969E+0 -0.716E+0

t 0.9 -0.587E+0 -0.955E+0 -0.995E+0

x 7
10

10
10

t 0.1 0.391E-1 0.150E-1

t 0.5 -0.657E-1 0.182E+0

t 0.7 -0.384E+0 0.486E-1

t 0.9 -0.774E+0 -0.261E+0

τ = 1
10 , 4x = 1

10 , τ
4x = 1

10

x 1
10

3
10

5
10

t 0.1 0.154E+0 0.110E+0 0.244E-1

t 0.5 -0.818E+0 -0.522E+0 -0.355E+0

t 0.7 -0.100E+1 -0.898E+0 -0.746E+0

t 1.0 -0.588E+0 -0.971E+0 -0.112E+1

x 7
10

10
10

t 0.1 -0.170E-1 -0.154E+0

t 0.5 -0.119E+0 0.286E+0

t 0.7 -0.507E+0 0.134E+0

t 1.0 -0.112E+1 -0.574E+0

τ = 1
5 , 4x = 1

10 , τ
4x = 2

x 1
10

3
10

5
10

t 0.2 0.206E+0 0.147E+0 0.326E-1

t 0.4 -0.343E+0 -0.179E+0 -0.843E-1

t 0.6 -0.820E+0 -0.606E+0 -0.473E+0

t 1.0 -0.810E+0 -0.107E+1 -0.128E+1

x 7
10

10
10

t 0.2 -0.946E-1 -0.206E+0

t 0.4 0.429E-1 0.189E+0

t 0.6 -0.158E+0 0.381E+0

t 1.0 -0.117E+1 -0.232E+0
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