
Efficient and Expandable Interpolating FIR Filter Design and
Implementation

A. CHOREVAS, D. REISIS
Physics Department
University of Athens

Panepistimiolopis, Physics Building IV & V
GREECE

Abstract: - This work describes the design and implementation of an interpolating digital filter that is placed at
the input of a Digital to Analog Converter (DAC) to relax the characteristics of the analog filter following the
DAC. The work presents techniques of parallelizing the filter computations leading to the design and
implementation of efficient architectures with respect to throughput and VLSI area. Furthermore, this design
involves techniques which facilitate expansion with respect to the filter length (taps) and internal and external
accuracy as well as adaptivity to various sampling rates.

Key-Words: - digital filter, interpolation, DAC, FIR, parallel. CSCC'99 Proceedings, Pages:6791-6795

1 Introduction
Digital to Analog Converters require output low-pass
analog filters to eliminate the undesired high
frequencies produced by the conversion. Other
systems, such as the modulator part of a
telecommunication system, use the output analog
filters also as shapers for the produced pulses [1].
Most often, the researchers designing DACs, telecom
systems, etc. require analog filters with
characteristics which lead to expensive realizations
[2,3].
 An attractive solution to the problems imposed by
the analog filter realization is to increase the input
rate of the DAC in conjunction with an interpolating
DAC-input digital filter. This can relax the analog
filter's requirements which then can be easily
implemented [2,4].
 In digital audio reproduction systems, such as CD
players, an efficient digital filter design can further
improve the system's performance as it can eliminate
the need of the analog filter. This can be achieved by
increasing the sampling rate. For example an x128
increase in the basic rate of 44.1 Ksamples /sec will
produce a 5.6 Msamples/sec output. Any commercial
audio amplifier will act as a low-pass filter for such
high frequencies so there is no need to use a distinct
analog filter that will affect the quality of the signal.
A second use in audio frequency systems is in sigma-
delta modulation converters [2].

 Another application field for the interpolating
filters is the modems of communication systems.
Here, the digital filter not only relaxes the constraints
of the antialiasing analog filter but also implements
part or all of the pulse shaping transfer function that
is required for the best performance of the modem
[1].
 The numerical interpolation starts with inserting
zeros between the real values (real samples). This
higher rate signal feeds a Finite Impulse Response
(FIR) filter. This method can preserve the values of
the initial samples by appropriate selection of the
impulse response of the filter [2]. Typically, the
impulse response of the FIR filter is a function with a
sin(x)/x form.
 An interpolating filter can be implemented in a
microprocessor specially designed for Digital Signal
Processing (DSP processor) or in specific hardware
(VLSI or FPGA). In a FIR filter only the repetitive
execution of Multiply/Accumulate (MAC)
instructions is required. So a custom VLSI design
that embeds a DSP-core is inefficient as most of the
processors capabilities are not used. Furthermore,
there are designs were one DSP processor cannot
handle the full set of computations to accommodate
the desired rate. Another drawback of DSP
processors is that when the required accuracy (word
length) exceeds the standard number representation
of the processor, the number of operations increase
dramatically as the MAC operation has to be

performed involving number fragmenting
techniques[6]. This leads to reduced throughput.
 Direct VLSI implementation of a FIR filter
(interpolating or not) typically involves replication of
the basic multiplication unit in order to achieve the
maximum throughput[4]. These designs require
larger area for both the additional multipliers and for
the storage of the intermediate results.
 This work proposes a direct VLSI implementation
which is well suited for optimizing VLSI area with
respect to sampling rate, word length and filter's
length. The design uses a regular structure and makes
extensive use of paralelization and pipelining in both
word and bit level in order to achieve the best
performance.
 Our test-case consists of a x128 oversampling
filter for audio frequencies. The filter is working with
input words of 16 bits, coefficient words of 18 bits,
internal (partial result) and output words of 32 bits,
input sampling rate 44.1 KHZ and 16 real input
samples. These values produce a 5.6 MHZ output.
 This work is organized as follows: Section 2
describes the FIR filter design, section 3 presents the
results in conjunction with some applications, and
finally section 4 concludes the work.

2 Interpolating FIR filter design
The data come with an input rate Fin while the filter
produces data with output rate Fout. Let us call the
rate Fout/Fin as “oversampling” rate and denote it
with the letter V. The interpolation process is
accomplished in two steps. In the first step (V-1) zero
values are inserted between two consecutive input
samples. In the second step the data are passed
through a FIR filter with impulse response of type
sin(x)/x.

2.1 Input data processing
 Let us start with K consecutive values of input X
and denote them

Xm, Xm-1, , Xm-(K-1)

where m denotes time instances which correspond to
the input rate Fin. Let us now insert (V-1) zeros
between any two consecutive values of these. The
sequence becomes:

Xm,0,0,...0, Xm-1, 0,0,...0, , Xm-(K-1), 0,0,...0
The last sequence is now rewritten using n to denote
time instances which correspond to the output rate
Fout.

Xn,0,0,...0, Xn-V, 0,0,...0, , Xn-V(K-1), 0,0,...0

It is clear that most of the data that feed the FIR filter
is zero.

2.2 FIR filter Design
The FIR filter calculates the output y at time n
according to the equation :

 y b xn i
i

M

n i= ⋅
=

−

−∑
0

1

(1)

where xi is the input of the filter at time i, M is the
number of taps (or filter coefficients) and bi is the i-
th coefficient of the filter (0 ≤ i < M). Most of the xi

involved in equation (1) are zero. Let K represent the
number of input samples used (as in the above
paragraph). Then M is connected with K through the
following equation:

M V K= ⋅ (2)
 When the values of V and M are high,
commercial chips usually cascade filters with lower
interpolating rates in order to reduce the complexity.
Cascading filters is far from being the optimal
solution due to the increased noise it produces.
 For the test case considered in this work the
coefficients are produced from the sampling of
function sin(x) / x. A window function is also used
[5] eventhough the differences between various
window functions are small for this application.
 The coefficients are digitized at the required
accuracy and represented as fixed-point values.
Simulations showed that representing the coefficients
with 18 bits give excellent results in out test-case. An
extra bit is used in the representation to compensate
for the possible "overshoot" produced by the
interpolation, and further to improve negative-
number handling within the multiplier units. The
same procedure is followed to produce the
coefficients of any function which can be realized by
the filter.

2.3 Implementation
When high rates are employed in FIR filtering,
distributed computation is required (fig.1). This leads
to designs that need extra registers to store the
intermediate results. The present work deals with
filters that not only perform in high rates but also
have a large number of taps. In our test-case
M=2048 so 2K words are used only to store the
coefficients. A design facilitating distributed
computations requires another 2K words to store the
intermediate results.
 The symmetry of the coefficients can lead to
"folded" designs [4] that use half the storage and

calculate half of the multiplications, but the final
VLSI area remains high for the applications
considered in this work. Moreover, for interpolating
filters with V > 2, the "folded" designs are not very
efficient as the main factor that allows the reduction
of the computational power is the presence of a large
number of zero input values.
 From equations (1) and (2) it is clear that the
calculations for each output value Y require only K
multiplications. So it is more efficient, with respect to
VLSI area, to perform the calculations directly for
each output Y instead of distributing the calculations
using architectures such as these presented in fig. 1.
Serial implementation of equation (1) results in the
minimal area but leads to low throughput designs.
 The block diagram of our design is presented in
fig.2. It consists of S stages (S<K). Each stage
employs P=K/S multiplications for each output Y
and uses a separate multiply/add unit. Each stage
keeps P of the K input samples (Xm) in a cyclic shift
register. These P values feed the first input of the
multiplier. The multiplier is working in a rate Fw
which is P times greater than the output rate Fout. A
ROM in each stage keeps the respective coefficients
and feeds the second input of the multiplier at the
working rate Fw. The adder unit is located at the
output of the multiplier. The control circuit instructs
the adder to accumulate P of the produced values and
add them to the result Y from the stage on the right.
The Yin of the rightmost stage has always zero
value. The complete architecture requires only S
registers to hold the intermediate results while
keeping all the benefits of the paralelization.
 The multiplier is a fully bit parallel array
multiplier [fig. 3]. The maximum speed is determined
by the time needed for a simple addition. Bitwise
pipelining in the addition can be easily employed to
achieve the maximum throughput [7].
 The regularity of the design makes it easily
implementable to multi-chip solutions when off the
self components are used. In our test case the filter

has been implemented in FPGA chips from XILINX
[8] and ALTERA [9].

3 Results and applications
A VHDL description with the appropriate utilities
has been produced in order to ensure the proper
function of the FIR filter under various values for
parameters V, K and the word length. The VHDL
description makes the design portable to any VLSI
platform.
 The test-case of this work is a DAC for
commercial CD players. It consists of an
interpolating filter with he characteristics that are
described in sections 1 and 2, and a parallel DAC. A
FPGA chip (e.g. the EPF10K130V from ALTERA)
includes the interpolating filter and the interface to
the digital output of the CD player. The filter has 32-
bit wide words output. The Most Significant Bits
(MSB) of the filter's output feed the actual Digital to
Analog Converter which has a tree structure (fig. 4).
The design of the DAC is still in progress.
Expandability and adaptivity have been tested so far
by timing simulations.
 Another application area is modems. The design
presented in this work can work in Discrete
Multitone (DMT) transceiver in order to improve the
analog output. DMT is used in Asymmetric Digital
Subscriber Line (ADSL) systems [3] (fig. 5).

4 Conclusion
This paper has presented techniques to design and
implement FIR filters for improved high speed
modem and audio reproduction applications. The
resulting architecture has been shown to be
efficiently expandable with respect to filter length as
well as data and coefficient word length. Further, it
can accommodate high throughput requirements and
use optimal storing area.

* * * *

+++

Xin

Yout

D D D D

* * *

++

Xin

*

+....
Yout

....

D D D D

b(0)
b(1) b(2)

b(M-1) b(M-2) b(M-3)

b(0) b(M-1)

Fig. 1: FIR filters using distributed computations.

Xin

X B

MULT

Adder

Yout
Yin

Xout

Stage

MUX

Fig. 2: Block diagram of the interpolating FIR filter.

A

B
S

A

B
S

00

Input 1

Input 2

A

B
S

...........

Output Result

MSB

LSB

D

D
D

D

D

D

D

D
D

A

B
S

....

Fig. 3: Pipelined multiplier.

1
1/2
1/4
1/8

1
1/2
1/4
1/8

1
1/2
1/4
1/8

1
1/2
1/4
1/8

1

1/16

1/256

1/4096

Vout

MSB

LSB

Fig. 4: Block diagram of a parallel DAC using tree-structure.

Encoder
Bit stream

IFFT
Parallel

to
Serial

Digital
Oversampling
Filter

DAC
Low
Pass
Filter

Channel

Fig. 5: Block diagram of a DMT transmitter.

References:
[1] J. Proakis, "Digital Communications", McGraw

Hill, 1995.
[2] K. Pohlmann, "Principles of Digital Audio" 2nd

Edition, Howard Sams & Company, 1989.
[3] J. Chow, J. Tu and J. Cioffi, "A discrete

multitone transceiver system for HDSL
applications", IEEE J. Select. Areas Commun.,
vol. 9, no. 6, 1991, pp.895-908.

[4] A. Chorevas, D. Reisis, E. Metaxakis, "An
Efficient Digital FIR Filter Design for 64
QAM", Proceedings of IEEE ICECS 1996,
Vol.2, 1996, pp.900-903.

[5] A. Oppenheim and R. Schufer, "Digital Signal
Processing", Prentice Hall, 1975.

[6] K. Hwang, "Computer Arithmetic", Jhon Wiley
& Sons, 1979.

[7] F. T. Leighton, "Parallel Algorithms and
Architectures: Arrays-Trees-Hypercubes",
Morgan Caufmann, 1992.

[8] XILINX, "4000 databook", 1997

[9] ALTERA, "FLEX 10K databook", 1998

