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Abstract: - The  robust stabilization of an integrated reactor/separator module with recycle is considered.  Linear
time-delay models are employed with system nonlinearities appearing in two different terms:  the first term
includes perturbations which are allowed to be nonlinear and/or time-varying, and the second term accounts for
nonlinearities in the input channel.  For a class of uncertain plants with delays in the state variables, sufficient
robust stabilization conditions are derived.  These conditions are given in terms of scalar inequalities that are easily
calculated.  Moreover, they do not require the solution of Lyapunov or Riccati equations.  Instead, induced norms
and corresponding matrix measures are used to yield stability criteria which are easy to evaluate.  A key
observation is that nonlinearities and plant uncertainty may destabilize the time-delay system.  Finally, a design
procedure to find a robustly stabilizing feedback matrix is given followed by an example that thoroughly illustrates
the results.                                                                              IMACS/IEEE  CSCC'99  Proceedings, Pages:6661-6666

Key-Words: - Uncertain Systems, Robust Stability, Time Delay, Series Nonlinearities, Chemical Reactors

1 Introduction
Many processes exhibit dynamic behavior that is
significantly affected by time delays.  The tranport of
reactants across membranes or the transmission of signals
by the circulation of hormones, are examples of events that
can induce a delayed outcome on the regulation of reaction
paths in biochemical processes [1].  Delays are also
imposed by process design constraints as is the case of
illuminated thermochemical reactions in the presence of
delayed feedback, and reactors which recycle unreacted
feed material.

Chemical process control systems are typically
designed using the unit operations approach.  That is,
controllers are designed for each piece of equipment or unit
in a plant, and then any conflicts between control loops are
reconciled [2].  As  Price and Georgakis [3] demonstrate in
their plantwide modular control design, two of the
candidate structures that frequently introduce time lags in
the model are materials recycle and the chemical
reactor/separator module.  Both operations are used
extensively in the chemical processing industry.  In most of
the literature on recycling, the process models assume that
no time delays are present in the recycle stream [4].  This
implies that the separation process and the return time to
the reactor are instantaneous.  While this assumption makes
the analysis simpler, it is nevertheless unrealistic.  The
process of recycling requires a finite amount of time which
introduces a delay into the system since both the
concentration of the reactants and the temperature in the
reactor depend on some past time.

The description of time-delay systems leads to
differential-difference equations, the solutions of which

require knowledge of past values of the system variables.
The response of a system with a time delay can be quite
complex.  For example, studies of isothermal reactions
indicate that delayed feedback may stabilize unstable
stationary states, or destabilize an otherwise stable steady
state [5].  It is then evident that the existence of time delays
may cause major difficulties in the design and
implementation of control and can cause significant
performance deterioration.  A variety of dead-time
compensation techniques have been proposed.  Much
attention has been given to the Smith predictor which
effectively removes the time delay from the characteristic
equation if the process model is perfect.  However, it is well
known that this technique can give unacceptable closed-
loop responses in the presence of plant/model mismatch [6].

Because the introduction of time delays makes the
analysis much more complicated, convenient methods to
determine stability have long been sought.  Lyapunov
theory has played a central role in the stability analysis of
ordinary or time-delay dynamic systems [7].  However,
general systematic procedures to construct appropriate
Lyapunov functions are yet not available.  Of the existing
stabilizing approaches, techniques that make use of
differential inequalities are highly appealing.  These
techniques have features useful for design, and have been
used to analyze ordinary as well as time-delayed systems
[8].  Two kinds of criteria have been developed: conditions
that are independent of the size of time delay, and delay-
dependent stability criteria.  For an extensive list of
references see [7].

Although linear control theory has a wide range of
applicability, many systems of interest display nonlinear
features that must be considered in practice.  For example,



actuators have physical limitations that may cause
saturation during operation.  If such nonlinearities are not
taken into account during control system design, integral
wind-up or limit cycles may occur [9].  The stability of
linear systems with saturating actuators has been studied
extensively [10]; however, there are few reports available
on the robust stabilization of time-delay systems with input
nonlinearities, let alone chemical reactors with modeling
uncertainty.  Hence the problem of designing robust
controllers to stabilize uncertain CSTR models with time-
delay and input nonlinearities in the presence of uncertainty
is well motivated.

In this paper the stabilization of a linear model of an
integrated reactor/separator module with recycle is studied.
Nikolaou and Hanagandi [11] have shown that there exist
nonlinear systems that are virtually linear for a
nonvanishingly small range of inputs as well as nonlinear
systems that can be approximated by linear models.  In this
work, linear time-delay models are employed with system
nonlinearities appearing in two different terms:  the first
term includes perturbations which are allowed to be
nonlinear and/or time-varying, and the second term
represents nonlinearities in the input channel.  The latter
class includes input saturation as a special case.

In section 2, a mathematical model of a chemical
reactor with recycle is developed as an example of systems
that include delays and uncertainty.  Robust stabilization
conditions are derived in Section 3 for any given plant that
contains delays in the state variables and plant uncertainty.
The key observation is that nonlinearities and plant
uncertainty may destabilize the time-delay system.  Finally,
a design procedure to find a robustly stabilizing feedback
matrix is given in Section 4 followed by an example that
illustrates the findings.

2 Motivation and Problem Formulation
Consider a continuous stirred tank reactor (CSTR) in which
a first order reaction A → B occurs. The dimensionless
equations describing the conservation of mass and energy
in the CSTR with recycle stream are given by

˙ x 1 (t ) = f1 (x):=− x1 (t )+ (1− λ)x1( t − h)

                          +Dae

x2 (t )

1+ x2 (t ) /ζ (1− x1(t)) (1)
˙ x 2 (t) = f2 (x):=− x2 (t)+ (1− λ )x2 (t − h)

                +BD ae

x 2 (t )

1+ x2 (t ) /ζ (1− x1( t)) −β( x2 (t) − x2c(t)) (2)

where the dimensionless variables x1  and x2  refer to the

extent of conversion and the temperature in the reactor,
respectively, and where x2c  is the temperature of thr

cooling stream.  The remaining dimensionless groups are
defined in the Notation section.  It is useful to remark that
equations (1) and (2) require knowledge of past values of
the variables x1  and x2 .  In the absence of time delay but

with the recycle stream still operating, equations (1)-(2)
reduce to

 ˙ x 1 (tn ) =− x1 (tn ) + D e

x 2 (tn )

1+ x 2 (tn ) /ζ (1− x1( tn )) (3)

˙ x 2 (tn) =− x2 ( tn) +BDe

x2 (t n )

1 + x2 (t n )/ζ (1 − x1(tn ))

                             −βn (x2( tn )− x2 c(tn )) (4)

where tn = λ t , D =D a / λ , and βn = β / λ .  Equations (3)-

(4) are the well-known equations for a CSTR given by
Uppal et al. [4].

Suppose that the control objective is that of regulating
the extent of conversion of the reactant (x1 ), by controlling

the temperature of the cooling stream x2c .  Defining

u = x2c  as the input signal and then expanding (3)-(4) in a

Taylor series and linearizing around a steady-state
operating point, a linear delay-differential equation in
matrix form ˙ x (t )= Ax( t) + Adx (t − h) + bu(t)  results,

where x = [x1 x2 ]T , f = [ f1 f2 ]T , A = [∂f /∂x ]ss ,

Ad =[∂f / ∂x( t − h)] ss , and b = [∂f /∂u ]ss .

When designing a control system, it is important to
take into account modeling uncertainties related to the
linearization process, or originating from various other
sources:  identification error, model reduction for design
purposes, variations of the plant parameters during
operation and other inaccuracies.  Because the issue of
robustness is part of the focus of this work, the model
considered is given by the state equation

˙ x (t )= Ax( t) + Adx (t − h) + Bu(t)

            + g(x( t), t) + gd (x(t −h ), t) (5)

which belongs to the class of uncertain time-delay systems
where g(x(t), t)  and gd (x( t − h ), t)  represent nonlinear,

possibly time-varying, modeling perturbations.

3 Theoretical Developments
A robust stability analysis is developed for time-delay
systems that may be affected by nonlinearities in the input
channel.  Prior to the discussion of robust stability some
useful concepts are presented.  Let u(t) ∈ℜm  be the input
vector and let N(u)  be a nonlinear map of the imput.

Definition 1.  Given a continuous nonlinear mapping
N: ℜm →ℜ m , and two real numbers p and q such that

q > p, N is said to lie inside a sector [p, q] if N satisfies the

following two properties:  (i) N(0) = 0 , and (ii)

N(u( t))−
p + q

2
u(t) ≤

q − p

2
u(t) (6)

where ( p +q ) 2  is the center of the sector and (q − p ) 2  is

its radius.
Definition 2.  The matrix measure is a function

µ: ℜnxn → ℜ , µ(A) = lim
ε→ 0+

I +εA − 1

ε
where ⋅  is an induced matrix-norm on ℜnxn  [12].



The following properties are of relevance:  ( i) µ( ⋅)  is a

convex function, (ii) µ(δA) =δµ (A ) , and (iii)

Reλ( A) ≤ µ( A) , where λ  is any eigenvalue of matrix A.

In the presence of input nonlinearities the uncertain
time delay system is represented by

           ˙ x (t )= Ax (t) + Ad x(t −h) + BN (u (t ))

      + g(x( t), t) + gd (x(t −h ), t) (7)
x(θ) = ϕ(θ ) , θ ∈[−h, 0]

y(t) = Cx ( t) (8)

where x(t) ∈ℜn  is the state vector with initial state
x(0) = x0 ; u(t) ∈ℜm  is the input vector; y(t) ∈ℜ p  is the

output vector; Ai, B, and C are constant matrices of
appropriate dimensions; ϕ( t)  is a continuous vector-valued

initial function; and h > 0 is the time delay.  The vector
function g(x(t), t) ∈ℜn  and gd (x( t − h ), t) ∈ℜ n  represent

nonlinear modeling perturbations that depend on the current
state x(t) and the delayed state x(t −h)  of the system,
respectively.  No statistical information is required about
the uncertainty vectors g and gd ; it is only assumed that the

modeling uncertainties satisfy the following norm-bounds:
g(x(t ), t) ≤ k x(t) (9)

and
gd (x(t − h), t) ≤ kd x(t − h) (10)

where k and kd  are a priori  known positive real constants,

and the operator ⋅  may be any appropriate vector norm.

In this article a state feedback control law of the form
u(t) = Fx(t) (11)

where F is a matrix of appropriate dimensions, is used to
derive the robust stability conditions.  The objective can be
stated as follows: find conditions that F must satisfy in
order to asymptotically stabilize the closed-loop (7)-(8) for
all modeling perturbations that conform with the norm
bounds (9)-(10).  Any matrix F that stabilizes the uncertain
delayed system is said to be robustly stabilizing.

Theorem.  Suppose that the plant uncertainties satisfy
conditions (9)-(10) and the following inequality holds:

− µ(A + Ad ) − q − p
2 || BF || −k −kd − hM > 0 (12)

where A = A + p+q
2 BF  and

M = AdA + AdAd + Ad (
q−p

2 BF + k +kd ) .

Then the uncertain delayed system (7)-(8) is asymptotically
stable under the feedback law (11).

The proof of the Theorem is given in the Appendix.
When the time delay h is not exactly known, the Theorem
can be alternatively stated in the following way which
yields an upper bound on h:  Let the feedback (11) be
implemented where F is a known matrix, then the closed
loop system (7)-(8) is asymptotically stable if the delay h is
bounded by

0 < h < h : =
−µ (A + Ad ) - q− p

2
|| BF || −k −kd

M
(13)

Remarks
• The tightness of the bound in (12) or (13) varies with

the chosen norm and the corresponding matrix measure
[12].  In other words, it is possible to determine
stability with a given norm and matrix measure while
with other choices the stability condition may not hold.
The largest bound computed for the 1, 2, or infinity
norms should be selected.

• When checking the asymptotic stability of a given
uncertain-delay system one should try the 1 or infinity
vector norms first, avoiding the costlier eigenvalue
computations associated with the 2-norm.  The
freedom in choosing a suitable norm and matrix
measure to improve the stability condition resembles
that of constructing an appropriate Lyapunov function
candidate in the well-known and widely used
Lyapunov approach for determining stability.

• For the nominal case where the uncertainty is
negligible ( i.e., g  and gd  are identically zero) and the

delay h = 0 , inequality (12) of the Theorem reduces to
µ(A + Ad ) < 0 , which implies that A + Ad  is

asymptotically stable, since

Reλ( A + Ad ) ≤ µ (A + Ad ) < 0 .

When h = 0 , condition (12) simply means that A + Ad

should be stable enough to overcome the difficulty
posed by the time delay in the system.  It is thus
evident that the time delay can destabilize an otherwise
stable closed loop.

• Besides the well-known 1, 2, and infinity norms, other
induced norms and matrix measures involving
weighting parameters may be utilized in the stability
conditions.  As an example consider the following
weighted matrix norm and corresponding matrix
measure:

A w = max
i

w j

wi
aij ,

j
∑

µw (A) = max
i

{aii +
w j

wi
aij }

j ≠i
∑ (14)

A simple optimization problem with respect to the arbitrary
weighting factors is likely to yield less conservative bounds
in (13).  This is a topic that merits further investigation and
is not pursued here.

The Theorem can also be specialized to the case of
input saturation. For example the clasical saturation
function N(u( t)) = sat u( t)  is defined as follows (see Figure

1):
sat u(t) = [satu1 (t) satu2 (t )... satum ( t)]T (15)

where

satui(t) =
u i , ui ≤u i

ui , ui < ui < u i
u i , ui ≥ u i

, i = 1,2,..., m
 
 
 

  
(16)



and where u i  and u i  are real scalars representing lower and

upper saturation limits, respectively.  In this case, condition
(12) is still applicable with [p,q] = [0 ,1].

4 Design Procedure
The previous analysis is used as a paradigm to propose an
iterative procedure for selecting a matrix F to satisfy the
robust stability conditions.

Step 1    : Given the norm bounds of the plant
uncertainty, select distinct negative
eigenvalues   λ i , i = 1,2, K,n  for the matrix

A .
Step 2    : When input nonlinearities are known to lie in

sector [p,q], find the control matrix F using a

standard pole-placement technique.  Next,
check whether inequality (12) is satisfied.  If
so stop; a robust matrix F  has been obtained.
Otherwise continue to Step 3.

Step 3    : Shift the system eigenvalues to the left using

  λ i = λii - ∆λi , i = 1,2,K ,n  where ∆λi > 0 ;

then go back to Step 2.
From the inverse point of view, one can estimate the

sector where the input nonlinearities must lie so that the
system remains asymptoticaly stable.  In such case the first
step of the algorithm remains the same.  In Step 2, check
condition (12) as if the nonlinearities were not present. If
inequality (12) is satisfied go to Step 4. Otherwise, continue
with Step 3.

Step 4    : From inequality (12) and the equality
( p +q ) 2 = 1, find variables p and q such that

the input nonlinearities lie in the sector [p,q].

The uncertain time-delay feedback system is
then guaranteed to be stable.

As pointed out earlier, the present work can accomodate
uncertain time delays.  If this is the case, inequality (13)
should be used instead of (12) in the above algorithm.

5 Example
This section demonstrates the applicability of the
robustness conditions developed earlier to the stabilization
of the Van de Vusse reaction kinetic scheme (Van de
Vusse, 1964; [13]), characterized by the irreversible
reactions

A → B → C ,
2A → D,

taking place in an isothermal CSTR with recycle stream.
The mass balances for components A and B are as follows:

˙ C A(t' )= −k1CA(t' ) − k3CA
2 (t' )+ λ

F

V
CAf

                 
+(1 − λ)

F

V
CA( t' −h' ) −

F

V
CA( t' ) (17)

       ˙ C B(t' ) = k1CA(t' ) − k2CB(t' )

                 
+(1 − λ)

F

V
CB( t' −h' ) −

F

V
CB( t' ) (18)

The control design problem in this case focuses on
regulating the concentration of component B (output CA )

by manipulating the inlet flow rate (control F ).  Despite its
simplicity, the Van de Vusse reaction scheme displays
some interesting behavior:  the reactor exhibits a change in
gain at peak conversion level, and has  nonminimum-phase
characteristics for operation to the left of this peak and
minimum phase for operation to the right.

Define t = t' F V  and h = h' F V  as the dimensionless

time and time-delay respectively.  Linearizing about the
steady state operating point (CAs , CBs , Fs), and writing all

variables in deviation form yields the following time-
delayed model for the reactor:

˙ x (t )= Ax( t) + Adx (t − h) + Bu( t)

             + g(x( t), t) + gd (x(t −h ), t) (19)

where x = ( ˜ C A ˜ C B )T , u = ˜ F , ˜ C A = CA − CAs ,
˜ C B = CB − CBs , ˜ F = F − Fs , and

A =
−k1

V

Fs

− 2k3
V

Fs

CAs −1 0

k1
V

Fs

−k2
V

Fs

− 1

 

 

 
 
 
 

 

 

 
 
 
 

,

B =
λ

(CAf − CAs )

Fs

−λ
CBs

Fs

 

 

 
 
 
 

 

 

 
 
 
 

,

and

Ad = 1− λ 0
0 1− λ

 
  

 
  

Nominal values for the physical constants of the model
and the operating conditions are given in Table 1. The
recycle ratio is taken to be λ =0.75 , and the uncertainty
bounds are k = kd = 0.25 .  The input variable is saturated

as described by (15)-(16) with u = 0  and u = 1.  The time

delay h is not exactly known and an upper bound for it is
sought.

Using a standard pole-placement technique, fix the
eigenvalues of A  to be {-3.94, -3.58}, and find the
feedback matrix F =[1.3 0.2].  Condition (13) then gives

the upper bound on h:  ( i) for the 1-norm, h = 2.09 , (ii) for
the 2-norm, h = 3.12 , and (iii) for the ∞-norm, h = 1.94 .
Therefore, for this specific example, h < 3.12  guarantees
the asymptotic stability of the system.  For the case where
no uncertainty is present the best upper bound on h is
h = 4.1 .

Now suppose that the input nonlinearities lie in the
sector [0.3  0.8] and the time delay is known to be h = 2.8.
Choose the feedback matrix to be F =[-2.81 − 0.52]

which places the closed-loop poles at {-4, -3.84}.  Then,
using the 1-norm and matrix measure when no uncertainty
is present, inequality (12) yields 0.17 which is greater than
zero; therefore the system is stable.
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Notation:
B Dimensionless adiabatic temperature rise,

[(−∆H )CAfζ / ρCpTf ]

CA Reactant concentration in the CSTR

CAf Reactant feed concentration

Cp Specific heat

Da Damköhler number, (koe−ζ V / F)

D Damköhler number, (Da / λ)

E Activation energy
F Total flow rate into the CSTR
∆H Heat of reaction
k o Arrhenius factor
t Time
tn Dimensionless time, (tnF / V)

T Reactor tank temperature
Tc Temperature of coolant
Tf Feed temperature
V Reactor volume
x1 Dimentionless concentration, [(CAf − CA ) CAf ]

x1(t −h ) Dimentionless concentration x1  at time t - h

x2 Dimensionless temperature, [(T −T f )ζ Tf ]

x2c Dimensionless coolant temperature, [(Tc − T )ζ Tf ]

x2( t − h) Dimensionless concentration x2  at time t - h

h Delay time for recycle stream
Greek Letters:
β Dimensionless heat transfer coefficient, (vA / FρCp )

βn Dimensionless heat transfer coefficient, (β / λ)

ζ Dimensionless activation energy, (E / RTf )

λ Recycle ratio
λ i i-th eigenvalue

ρ Density
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Appendix
A.1 Proof of Theorem 1.

Lemma [7].  Let a scalar function f( t)  satisfy the

inequality ˙ f ( t) ≤ −α f(t) + βsupt − h ≤ s≤t f (s) , t ≥ t0 , where

α, β are real constants such that α > β ≥ 0 .  Then there

exists scalars γ > 0  and K > 0  such that
f( t) ≤ K exp(−γ (t − t0 ))

for t ≥ t0 .

Consider the initial time to be zero and let x(t) be the
solution of (7) for t ≥ 0.  Since x(t) is continuously
differentiable for t ≥ 0 write

x(t) − x(t −h ) = ˙ x (s)ds
t − h

t

∫ = [
t − h

t

∫ Ax (s) + Ad x(s − h)

               

+ BN(u (s ))+ g (x(s),s) + gd (x (s − h),s )]ds (A.1)

Substitute for x(t − h)  in (5) using (11) to obtain

˙ x (t )= ( A + Ad )x( t)− Ad {A x(s )+ Adx (s − h)
t −h

t

∫
    

+ B[N(u(s)) − p+q
2 u(s )] + g(x(s ),s)+ gd (x (s − h), s )}ds

            + g(x( t), t) + gd (x(t −h ), t) (A.2)



where the term 
p+q

2 Bu(t)  has been added and subtracted,

and matrix A  is defined as A = A+ p+q
2 BF .  The solution

to (A.2) for t ≥ 0 is expressed as the integral equation

x(t) = e(A + Ad )tx (0)

       + eµ (A + Ad )(s − h)
0

t

∫ (−Ad )[A x(ϑ) + Ad x(ϑ − h)
t −h

t

∫
    + B[N(u(ϑ ))− p+q

2 u(ϑ )]+ (g (x (ϑ), ϑ)

         

+ gd (x(ϑ − h),ϑ))]dϑ + g(x(s), s) + gd (x(s −h ), s)ds

(A.3)
An upper bound on the norm of the solution of (A.3) can be
found after taking the norm of both sides, using known
norm properties, using inequality (6), and using

e At ≤ eµ(A) t ,t ≥ 0  [12], to get

x (t) ≤ sup
−h≤ t ≤ h

x( t) eµ (A + Ad )( t −h )

+ eµ (A + Ad )(s − h)
0

t

∫ [( Ad A + q−p
2 Ad BF ) x(ϑ)

t −h

t

∫
+ AdAd x (ϑ − h ) + Ad g (x (ϑ),ϑ)

     + gd (x(ϑ − h),ϑ) ]dϑ + g(x(s),s) + gd (x (s − h),s) ds

(A.4)
Now use the plant uncertainty bounds (9) and (10) in (A.4)
and define χ := sup− h≤ t≤ h x(t)  to obtain

x (t) ≤ χeµ( A + Ad )( t − h)

+ eµ (A + Ad )(s − h)
0

t

∫ [ Ad A x(ϑ) + AdAd x(ϑ − h)
t −h

t

∫
            + Ad ((

q− p
2 Ad BF + k) x (ϑ) + kd x(ϑ − h) )]dϑ

            +k x(s) + kd x (s − h) ds (A.5)

After carrying out the inner integration, inequality (A.5)
can be written as

x (t) ≤ χeµ( A + Ad )( t − h)

                     + eµ (A + Ad )(s − h)
0

t

∫ hM sup
s− 2 h≤ ϑ≤ s

x(ϑ )

                     +k x(s) + kd x (s − h) ds (A.6)

where M = AdA + AdAd + Ad (
q−p

2 BF + k +kd ) .  Let

z(t) ∈ℜ  be a signal that attains the equality sign in (A.6),
i.e.,

z(t) = χeµ(A + Ad )( t − h)

                   + eµ (A + Ad )(s − h)
h

t

∫ hM sup
s− 2 h≤ ϑ≤ s

x(ϑ )

                   +k x(s) + kd x (s − h) ds (A.7)

Then,
˙ z (t) = µ (A + Ad )z (t) +hM sup

t − 2 h≤ϑ ≤t
x(ϑ)

                  +k x(t) + kd x (t − h) (A.8)

From equations (A.6) and (A.7) it is obvious that
x (t) ≤ z(t)  for t ≥ 0.  Hence,

sup
t − 2 h≤ϑ ≤ t

x (ϑ) ≤ sup
t − 2h ≤ϑ ≤t

z(ϑ)

x (t − h) ≤ z(t −h) ≤ sup
t − 2h ≤ϑ ≤ t

z (ϑ) (A.9)

After substituting (A.9) in (A.8) the following differential
inequality results:

˙ z (t) ≤ −(− µ(A + Ad ) − k)z(t )+ (hM + kd ) sup
t −2h ≤ϑ ≤ t

z(ϑ )

(A.10)
After invoking the Lemma, z(t) ≤ Ke−γ (t − h ) , i.e., z(t)  is
asymptotically stable if

(−µ(A + Ad ) −k) > (hM + kd ) > 0 (A.11)

which concludes the proof. Q.E.D.

A.2 Matrix measure computation.
For the usual 1, 2, and infinity induced norms, the matrix
measure is given by the simple formulas below where the
induced norms are also included for completeness.

A 1 = max
j

| aij |
i∑ , µ1 (A) = max

j
(a jj + | aij |)

i ≠ j∑
A 2 = λmax(AT A)1 2 , µ2 (A) = λmax(

AT + A
2

)

A ∞ = max
i

| aij |
j∑ , µ∞(A )= max

i
(aii + |aij |)

j ≠ i∑
where AT  is the  transpose of matrix A, and λmax  denotes

the maximum eigenvalue.

Table 1.  Kinetic parameters and operating variables for the
model used in the example.

k1 50 h-1

k2 100 h-1

k3 10 L mol-1 h-1

Cas 10 mol L-1

V 1 L
Cas 3.0 mol L-1

CBs

Fs

1.12 mol L-1

34.3 L h-1

s a t   u i 

u i 

s l o p e   =   q 
s l o p e   =   p 

- 

u - 
  i 

u i 

Figure 1.  Actuator saturation with bounds u i  and u i , and

sector nonlinearity [p,q].


