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Abstract: In this paper speed estimation of induction motors is prescribed by a neural network. The neural
network carries out it’s computing in the rotating coordinate of vector control analysis for constant rotor flux.
It is shown that in the rotating coordinate because of the lack of signals oscillations, speed estimation can be done
with a smaller and more implementable neural network and learning will be easier and faster. The resulting
estimation will be more satisfactory. For analogy speed estimation of induction motors in the statorfixed
coordinate is presented.
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1  Introduction
In sensorless speed control of induction motors via
vector control analysis, one can use inputs (stator
currents and voltages) and output (speed) equations to
find an appropriate relation between inputs and
output. But these equations are achieved via some
simplifying assumptions. Then it is wise to use a
neural network and let it find more satisfactory
relationship between inputs and output from real data
values. Two sets of data values are available:
1. Set of signals in the statorfixed coordinate.
2. Set of signals in the rotating coordinate.
ANN’s learning can take place with both of these sets.
The first set will lead to a general purpose but
complex speed estimator. The second set will lead to a
small and easily implementable ANN, but it can be
used only in vector controlled drives.These drives
have become quite popular in recent years.
In vector control method we can find control strategies
to achieve the same control behaviour as a DC
machine, that is separated control for the excitation
and the torque [1],[2],[6].
    The main object of this work is to present a simple
ANN speed estimator in the rotating coordinate and

compare it with other methods. In this analogy
Mehrotra’s et al. paper [3]  is taken  into
consideration for speed estimation in the statorfixed
coordinate and Ben-Brahim’s  [4] and Wishart’s et al
[7] papers are considered for the rotating coordinate
This paper consists of the following parts. In section 2
the block diagram of the control system is described.
This control system uses vector control method with
constant rotor flux. In section 3 the problem of speed
estimation in the statorfixed coordinate is described.
Section 4 deals with the problem of speed estimation
in the rotating coordinate. Finaly the paper is
concluded in section 5.

2  Control system
Figure 1 shows control system block diagram.
Parameters of the motor which is used in the
simulation is in the appendix.
   The asynchronous machine is fed from a  voltage
source inverter (VSI) . The control system uses
current feedback. For motor dynamics simulation  a
simple model is used which is presented in [2].



Figure 1:Block Diagram of the Control System.

In this control system constant rotor flux is considered
and all of the analysis are in the rotating coordinate.
In figure 1 the block No.1 simulates induction motor
dynamics, block No.2 uses stator currents and
voltages to constructing magnetization current, torque
and estimated speed. In this block, speed estimation is
done by neural network. Current reference signals ( isq

and isd ) are constructed in block No.3 and finally
block No.4 delivers requested voltages to the motor.
Simulations are done by MATLAB/Simulink
software.

3  Speed estimation in the statorfixed
coordinate
In [3] speed estimation is done by neural network in
the statorfixed coordinate.In that paper two methods
are presented. In the first method the following
equations are considered:

         -  σ 2  disd /dt + RrLs isd  - Rr ∫ Vxd dt - Lr Vxd

wr =                                                                      ( 1)
                             σ2  isq + Lr ∫ Vxq dt

Figure 2: Real and Estimated Speed in the First Method.

             σ 2  disq /dt- RrLs isq +Rr ∫ Vxq dt +Lr Vxq

 wr =                                                                     ( 2)
                                σ2  isd + Lr ∫ Vxd dt

Vxd   = usd - Rsisd    
Vxq   = usq - Rsisq

 σ2   = Lm
2 - LrLs    

In which,

wr   is mechanical angular frequency of the rotor.
usd , usq   are d and q   components of the stator voltages
respectively.
Rs   is stator ohmic resistance .
Ls ,Lr ,Lm  are stator inductance rotor inductance and
magnetizing inductance respectively .

One of the necessary condition for an ANN to
approximate a function is that the function be square
integrable in the n-dimentional unit hypercube[5]. This
condition is obviously not satisfied by either (1) or (2)
because both equations have singularities. thus
numerators and denominators are learned separately
and then the output of these ANNs are passed through
a zero crossing filter.



Figure 3: Real and Estimated Speed in the Second
Method.

The actual and estimated speeds are shown in Fig.2
This result is achieved after giving 6 million vectors of
inputs.
This method must face two problems [2]:
1.This technique would require very high performance
A/D converter and dedicated ANN hardware to
implement it in real time.
2. It requires some form of zero- crossing filter. This
would pose a problem if this scheme has to be
implemented on an ANN chip.
In the second method the following equation is
considered:

            (σ2p - RrLs - RsLr - RsRr/p)Is + (Lr + Rr/p)Vs

wr=                                                                        (3)
                   j[(σ2-RsLr/p)Is  + (Lr /p)Vs ]

In  which,

I s = isd  + jisq

Vs = usd  + jusq

This method uses a 2-hidden layer, 10 -input, single
output  ANN to estimate speed of the motor. We must
take  into  consideration, that    in  equation (3)
there exist a non-singular function between the
induction motor speed and the stator quantities.The
learning is done via 7.5 million iterations.The actual
and ANN recovered speeds are shown in   Fig.3 .
Obviously this is not a satisfactory estimation.

Figure 4: Speed Estimation in the Second Method with
Modification.

This estimation can be improved if the magnitudes and
phase angles of all the quantities are given instead of
their d-q components. The respone of the ANN in this
case is shown in Fig.4.
If the speed estimation passes through a low pass filter
a better estimation will be achieved(Fig.5)
As in previous  method, this method must face those
two problems too.

4  Speed estimation in the rotating
coordinate
In the previous methods the ANN’s inputs (stator
currents and voltages ) change much more faster than
ANN’s output (estimated speed ). The use of the
rotating coordinate in which ANN’s inputs change
much more slower than the previous state,(Fig .10 )is,
therefor preferable.
In [4] speed estimation is done via an on-line neural
network in the rotating coordinate. In this method the
following equations are considered:

        Φr = Lr (Vs  - Rs is  -σ Ls is  ) / Lm        (4)

        λ r  = (-I / Tr  + wr  J) λr  + Lm  is /Tr       (5)

          I=[ 1 0 ; 0 1]

          J=[0 -1; 1 0]



In equation (4) wr  (rotor speed ) has not appeared, but
in equation (5) wr  has appeared directly.Φr  in equation
(4) is assumed to be actual rotor flux and equation (5)
is implemented by a 3-input, single output on-line
neural network .
In this neural network one of the weights corresponds
to the speed magnitude.
The learning procedure uses the error between rotor
flux in equation (4) and ANN’s output to change the
weights. A good flux estimation will leads to a good
speed estimation.
This method loses one of the must important benefits
of ANNs, in this method motor parameter variation
aren’t considered. For instance if Lm (magnetizing
inductance) varies because of the motor saturation or
Rr ( rotor ohmic  resistance ) varies because of the
temperature variation, the estimated speed of ANN
doesn’t vary.
Another work is [7] in which speed estimation is done
in the rotating coordinate. There is a risk of saturation
since there is no control over the flux.
In the following method  a 1- hidden layer, 3-input,
single output ANN in the rotating coordinate is used
to estimate the rotor speed.
Consider the following equation:

           wr = ( usq  - Rr )(1-σ)Ls imr  / isq                (6)

in which, imr is magnetization current.
Comparing equation (6) with equations (1) and (2),
it  can  be seen from this analogy  that equation (6) is
simpler.  In section 3, first and second methods need
Integrators, Differentiators and T.D.L.s, but in this
method they are not appeared.
This neural network (Fig.9) uses isd ,isq , usq as inputs
and estimates  the rotor speed.  ANN’s  output can be
used without any filtering (compare with second
method in   section 3). This neural  network is so
small which can be a part of the control
system.(compare with two methods in section 3 in
which dedicated
ANN hardware is required.) Thus this method reduces
implementation problems. Actual and ANN recovered
speed are shown in Fig.6. Error between actual and
recovered speeds is shown in Fig.7. Training Results
are ploted in Fig.8.

 Figure 5: Real and Estimated Speed in the Second
Method with Filter.

Figure 6: Real and Estimated Speed in the Last Method

Figure 7: Error Between Real and Estimated Speed in the
last Method.

Error %



In section 3 to circumvent the problems of large data
files and substantial training times, the whole drive
system with the ANN was simulated in C++ on a
SUN SPARC-10 workstation. But in this method
MATLAB/ Simulink  software has proven  sufficient.

5  Conclusion
In this paper speed estimation in the rotating
coordinate is compared with speed estimation in the
statorfixed coordinate. Speed estimation in the
rotating coordinate has the following benefits:
1.Smaller neural network.
2.Better speed estimation.
3.Fewer  implementation problems.
4.Faster learning .
Also our suggested neural network  achieves a good
robustness to motor parameter variation if learning is
sufficient.

Appendix
Asynchronous Machine Parameters:

fa    = 50       Hz

Z p  = 3         ---

MN  = 149     Nm

UN  = 380      v

PN  = 15        kw

Ls    =34.3      mH

Lr    =34.1      mH

Lm  = 34.2     mH

Figure 8: Training Results in  the Last Method

Figure 9: Neural Network Block Diagram in the Last
Method.

Figure 10: Stator Volages and Currents in the Rotating
Coordinate.
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