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Abstract:- Hybrid position/force control enables a

robot arm to apply speci�ed forces to a constraint

while moving on the constraint surface. The

standard approach is to �nd a Cartesian coordin-

ate frame (a task frame) in which the constraint

is naturally decomposed into constrained coordin-

ates and unconstrained coordinates. Force is then

controlled in constrained directions, while pos-

ition is controlled in unconstrained directions.

However, this approach assumes that it is pos-

sible to decompose the constraint in this way

using Cartesian coordinates, which is rarely the

case. For example, Cartesian coordinates cannot

be used to decompose a contour tracking task in-

volving a curved surface. To deal with such non-

Cartesian constraints, some researchers have pro-

posed using a rotating task frame that keeps con-

strained axes pointing in constrained directions.

However, it is explained in this paper that this ap-

proach leads to an over-speci�ed control problem.

A proper approach is to use non-Cartesian co-

ordinates, as described by Yoshikawa in [1]. The

present paper provides theoretical justi�cation for

Yoshikawa's approach. First, task coordinates are

formally de�ned in terms of their position/force

decoupling properties. Next, it is proved that

Yoshikawa's method of choosing coordinates for a

given holonomic constraint always yields coordin-

ates with these properties. Finally, the method is

demonstrated on two example non-Cartesian con-

straints, one of which corresponds to a six degree

of freedom hybrid task.

Key-Words:- Robot control, constrained manipu-

lators, hybrid position/force control.

1 Introduction

The goal of hybrid position/force control, or hy-

brid control for short, is to control simultan-

eously the position of a manipulator and the force

it applies to a constraint. Research on hybrid

control has been based largely on Raibert and

Craig's seminal work [2], in which hybrid tasks

are described with respect to a Cartesian con-

straint frame. Positions/rotations are controlled

along/about certain axes, while forces/moments

are controlled along/about others. The orienta-

tion of the constraint frame is chosen such that

velocities are constrained to be zero in force-

controlled directions, while constraint forces (not

including friction forces) are zero in position-

controlled directions. In this way, the con-

straint frame decouples the robot's tool location

into velocity-constrained coordinates and force-

constrained coordinates. Based on this frame-

work, a number of hybrid controls have been pro-

posed in the literature to regulate position and

force simultaneously.

In [3], it is shown that the concept of ortho-

gonal complements is incorrectly applied in the

framework of [2]. In Section 3 of the present

note, we identify two more problematic issues

with the framework of [2] which limit the gen-

erality of the hybrid control approach. The �rst

problem is that the constraint frame is de�ned

according to velocity constraints, whereas hybrid

controls are expressed in terms of position com-

mands. This leads to the erroneous notion of a

moving constraint frame [4]. The second problem

is that most constraints cannot be decomposed

in Cartesian coordinates, as we will demonstrate

with some examples. We shall refer to such con-

straints as non-Cartesian constraints.



The problem of force and position control of

robots in contact with non-Cartesian constraints

was �rst addressed in [5], where the constraint

was modelled as an algebraic equation in robot

joint coordinates (i.e. as a holonomic constraint).

There, the position was speci�ed via joint co-

ordinates and the force speci�ed via Lagrange

multipliers. A similar formulation is presented

in [6] using world coordinates. Yoshikawa pro-

poses a hybrid control formulation in [1, 7] that

speci�es the position and force using generalized

coordinates that are directly related to the con-

straint geometry and the associated generalized

forces (as opposed to Lagrange multipliers). This

approach is an intuitive generalization of Raibert

and Craig's hybrid position/force control to holo-

nomic constraints.

In Section 4 of this note, we present theoret-

ical justi�cation for Yoshikawa's generalised hy-

brid control formulation. Speci�cally, we provide

a constructive proof that his task coordinates ex-

ist for any holonomic constraint. We then apply

this result to two examples.

2 The Hybrid Control Problem

In this section, we formulate the hybrid control

problem in an arbitrary coordinate system. The

resulting coupling between position- and force-

controlled coordinates motivates the use of a spe-

cial coordinate system related to the constraint

geometry.

A constrained manipulator is depicted in Fig-

ure 1. An end e�ector mounted on the distal link

of the manipulator is in contact with a constraint.

The end e�ector of the planar manipulator shown

in Figure 1 is simply a point in two dimensional

space, and is constrained to a line. More gener-

ally, we model the end e�ector as a rigid body in

three dimensional space and the constraint as a

mechanism that allows certain end e�ector posi-

tions and orientations but not others.

The position of the end e�ector is parameter-

ized by a vector of generalized coordinates p 2

Rn, where n is the number of degrees of freedom

(DOF) of the end e�ector when unconstrained.

For example, n = 6 for a three dimensional rigid

body, n = 3 for a planar rigid body, and n = 2

for a single point in a plane (as in Figure 1). In
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Figure 1: Planar Constrained Manipulator

the case of a three dimensional rigid body end ef-

fector, p is usually chosen as p =

 
pt
pr

!
, where

pt is the three Cartesian coordinates of a point

on the end e�ector, and pr is the roll, pitch, and

yaw angles of the end e�ector. In general, the

coordinates p are unrelated to the constraint geo-

metry.

The constraint is modeled as a set of smooth

algebraic equations in p. That is, we assume

there is a C1 function �p : R
n ! Rm such that

�p(p) = 0. The constraint shown in Figure 1

is actually of the form �p(p) � 0, since it per-

mits loss of contact, but we shall assume that the

robot is always in contact with the constraint.

As well as moving on the constraint, the end ef-

fector can apply a generalized force Fp 2 Rn to

the constraint. The subscript p signi�es that Fp
is the generalized force corresponding to the gen-

eralized coordinates p. For example, if n = 6

and p is chosen as a set of three Cartesian po-

sition coordinates and three orientation angles,

then Fp consists of three force components and

three torque components. We do not include fric-

tional forces in the constraint force Fp. Therefore,

Fp is normal to the hypersurface �p(p) = 0.

A hybrid task is speci�ed by desired values of

p and Fp. However, it is not possible to specify

independently all 2n position and force compon-

ents. It is shown in [8] that n � m components

of p, denoted by p1, and m components of Fp,

denoted by Fp2, are independent. This motivates

us to de�ne the task vector rp =

 
p1
Fp2

!
. Since



the components of the task vector are independ-

ent, a hybrid task may be speci�ed by a desired

value rd of the task vector, given as a function of

time. The m dependent generalized coordinates,

denoted by p2, and the n �m dependent gener-

alized forces, denoted by Fp1, de�ne the re
ected

task vector �rp =

 
Fp1
p2

!
. The general form of

the functional dependence of �rp on rp is derived

in [8].

As an example, consider the simple constraint

of Figure 1, and assume the constraint equation

is given as

�p(p) = p1 + 2p2 � 1 = 0: (1)

The end e�ector can move along the line while

applying a force Fp normal to the line. By

inspection, the dependence among the position

and force components is Fp1 = 1
2Fp2 and p2 =

1
2(1� p1). Since p1 and Fp2 are independent vari-

ables, they may be freely speci�ed and uniquely

determine Fp1 and p2.

Now let us consider the control of p1 and Fp2
using the robot arm shown in Figure 1. The gen-

eralized actuator forces � 2 Rn applied at the

joints of the arm are computed by a hybrid con-

trol based on feedback of p1 and Fp2 . Typically,

p1 is infered from measurements of joint coordin-

ates q 2 Rn while Fp2 is measured using a wrist-

mounted force sensor. The general hybrid control

problem is as follows:
Given a hybrid task rd(t) and position

and force measurements p1(t); Fp2(t),

how should we command the manipu-

lator actuator forces �(t) 2 Rn in order

to keep the error e = rp(t)�rd(t) small?

A block diagram associated with the general

hybrid control problem is shown in Figure 2. It

shows the interaction between the constraint, the

robot arm, and the hybrid control. The input to

the constraint is the task vector rp while the out-

put of the constraint is the re
ected task vector

�rp. The input to the robot arm is the re
ected

task vector �rp and the actuator forces � , while

the output is the task vector rp. The input to the

hybrid control is the desired task vector rd and

measurements of the actual task vector rp, while

the output is the vector of actuator forces � .
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Figure 2: Block Diagram of Hybrid Control Prob-

lem

3 Task Frames

The drawback of expressing the hybrid task of

Figure 1 in terms of p -coordinates and forces is

that Fp1 is proportional to the controlled force

Fp2. This is undesirable because Fp1 acts as a dis-

turbance to the controlled position p1 and tends

to drive the end e�ector away from the desired

value of p1. If separate controls are used to con-

trol p1 and Fp2, they must work against each

other to some extent.

In Figure 3, a new coordinate frame Ox has

been introduced, and hybrid tasks may be spe-

ci�ed via x1 and Fx2. Since the x1 axis is parallel

to the (frictionless) constraint, we have Fx1 = 0.

Thus, a desired force Fx2 does not produce a dis-

turbance force Fx1. A frame Ox whose orienta-

tion is chosen such that Fx1 = 0 is referred to

as a task frame (also called a constraint frame in

[2]). The task frame is the foundation of Raibert

and Craig's hybrid control framework [2], wherein

hybrid tasks are speci�ed via x1 and Fx2.

A fundamental problem with Raibert and

Craig's approach to hybrid task speci�cation is

that task frames do not exist for certain con-

straints. For example, consider the curved con-

straint of Figure 4. When the end e�ector is at

the point shown, we have Fx1 = 0. However,

when the end e�ector is at any other point on

the constraint, Fx1 is proportional to Fx2. There-

fore Ox is not a task frame for this constraint.

Moreover, this constraint has no task frame be-
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Figure 3: Task Frame for a Linear Constraint

cause it is curved.

To extend the notion of task frames to con-

straints such as that of Figure 4, it was sugges-

ted by way of example in [2] that the task frame

could move with the end e�ector and rotate so

that Fx1 is always zero. However, it is meaning-

less to specify the position x1 of the end e�ector

with respect to such a moving frame since this

distance would always be zero.

Another approach, proposed in [4], is to have

the task frame move with the desired position of

the end e�ector and rotate so that Fx1 is always

zero. The desired force is then expressed with re-

spect to this rotating task frame via Fx2, while the

desired position is given by the trajectory of the

task frame itself. For the constraint of Figure 4,

the task would be speci�ed by the position and

orientation of the task frame and the force Fx2.

However, this speci�cation requires four variables

(two position coordinates, a rotation angle, and

force) instead of two. This redundancy is due to

the fact that p2 and the rotation angle are each

functions of p1 (which depend on the constraint

equation). Hence, the task is overspeci�ed by this

approach.

We conclude, therefore, that the hybrid control

framework of [2] properly applies only to con-

straints that have stationary task frames. We

will refer to such constraints as `Cartesian con-
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Figure 4: A Constraint That Has No Task Frame

straints'. For end e�ectors represented as points

in R2 or R3, Cartesian constraints include only

straight lines and 
at surfaces (if the decoupling

condition Fx1 � 0 is to always hold).

4 Generalized Task Coordinates

In this section, we generalize the hybrid control

approach to apply to non-Cartesian constraints.

Given a general holonomic constraint, the goal is

to �nd a set of generalized coordinates x such that

Fx1 is always zero. We refer to such coordinates

as task coordinates. Yoshikawa [1, 7] illustrated

how task coordinates could be chosen for a num-

ber of holonomic constraints. We will prove that

task coordinates can be found for any holonomic

constraint.

Let us begin by �nding task coordinates for

the constraint of Figure 4. Given a point p in the

plane, let x2 be the distance from the constraint

to p, measured along a line normal to the con-

straint, and let x1 be the arc length along the con-

straint to the normal (from some reference point

on the constraint). Figure 5 shows curves of con-

stant x1 and curves of constant x2, which together

yield a coordinate chart. Let x =

 
x1
x2

!
. Since
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Figure 5: Task Coordinates for a Curved Con-

straint

x uniquely determines p in the region shown, x

is a set of generalized coordinates for the end ef-

fector. Let Fx1 be the generalized force associated

with x1 and let Fx2 be the generalized force as-

sociated with x2. Clearly, Fx1 is the tangential

force and Fx2 is the normal force. Since Fx1 is

always zero, the coordinates x are task coordin-

ates for the constraint. Note that there is no task

frame associated with x. In this example, where

the end e�ector is modelled simply as a point,

the task coordinates x are generally referred to

as curvilinear coordinates .

Let us formulate a general de�nition of task

coordinates, given a set of generalized coordinates

p in Rn, a smooth holonomic constraint �p(p) =

0, and a point p0 on the constraint. We assume

that rank
@�p

@p
(p0) = m. Then the partition of p

can be chosen such that
@�p

@p2
(p0) is invertible.

Suppose that x in Rn and p are related by a

smooth di�eomorphism x = Xp(p) in some neigh-

borhood of p0 so that x is locally a set of gener-

alized coordinates for the end e�ector. In x co-

ordinates, the constraint manifold is expressed as

�x(x) � �p[X
�1
p (x)] = 0: (2)

We assume the vector partition x = (x1; x2)
T

with x1 2 R
n�m and x2 2 R

m. Let x0 = Xp(p0),

and assume x10 is the value of x1 when x = x0.

De�nition 1 Generalized coordinates x are task

coordinates if Fx1 = 0 and x2 = 0 for all x1 in

some neighborhood of x10.

The following theorem states that task coordin-

ates can be found for any holonomic constraint.

Theorem 1 Let p0 2 �p such that �p(p0) = 0,

and assume that
@�p

@p2
(p0) is invertible. Then there

exists a set of task coordinates x de�ned on some

neighborhood of p0.

Proof De�ne the coordinate transformation x =

Xp(p), where Xp(p) =

 
p1

�p(p)

!
. Then we have

@Xp(p)

@p
=

"
In�m 0
@�p(p)
@p1

@�p(p)
@p2

#
: (3)

As
@�p

@p2
(p0) is invertible,

�
@Xp

@p
(p0)

�
�1

exists and

is given by2
4 In�m 0

�
�
@�p

@p2
(p0)

�
�1 @�p

@p1
(p0)

�
@�p(p)
@p2

�
�1

3
5 : (4)

Because Xp(p) is C
1 and has an invertible Jac-

obian at p = p0, the inverse function theorem [9]

states that there exist neighborhoods �p of p0
and �x of x0 = Xp(p0), and a C1 function X�1p :

Rn ! Rn, such that for each x 2 �x, there exists

a p 2 �p given by p = X�1p (x). Hence, Xp(p) is

a smooth di�eomorphism, and thus x is a set of

generalized coordinates. Since �p[X
�1
p (x)] = x2,

the constraint equation �p(p) = 0 becomes

x2 = 0; 8x1 2 �x1: (5)

Since the workW done by the end e�ector on the

constraint is zero, we have

�W = FT
x1�x1 + FT

x2�x2 = 0 (6)

From (5) we have �x2 = 0, which together with

(6) gives

FT
x1�x1 = 0: (7)

Now as (7) must hold for arbitrary �x1, we have

Fx1 = 0: (8)

2
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Figure 6: Hybrid Control Problem in Task Co-

ordinates

Figure 6 shows the hybrid control paradigm

cast in terms of task coordinates. Note that since

�rx = hx(rx) = 0, there is no feedback through

the constraint block. In particular, the applied

force Fx2 does not produce a disturbance force

Fx1, which might otherwise drive the end e�ector

away from a desired value of x1.

Theorem 1 lends theoretical justi�cation to

the method of hybrid task speci�cation proposed

in [1, 7], where the idea of using curvilinear co-

ordinates instead of task frames was proposed.

In [1, 7], x2 was chosen as x2 = �p(p), but it was

not proved that x1 can then be chosen so that x

is a set of generalized coordinates. Also, it was

not proved that x2 = �p(p) implies Fx1 = 0.

We conclude this section with a 6-DOF ex-

ample of task coordinates for which a task frame

does not exist. In Figure 7, the end e�ector is a

socket wrench, assumed to be rigidly �xed to a

bolt which is threaded into a hole. As the con-

strained end e�ector has just one remaining de-

gree of freedom, we have m = 5. The world co-

ordinates p consists of the three linear translation

components (px; py; pz) and the three orientation

angles (�; �;  ) applied in turn about the �xed

axes.

The constraint equation is

�p(p) =

0
BBBBB@

2��py � �

px
�

pz
 

1
CCCCCA = 0; (9)
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Figure 7: A Bolt-Tightening Task

where � is the pitch of the thread.

Note that there is no task frame for the con-

straint of Figure 7 since it is not possible to re-

orient the p-frame such that one of the general-

ized forces is zero. If the bolt were simply a peg

with no threads, the p-coordinate frame shown

in Figure 7 would be a task frame for this con-

straint, since then all coordinates except py and

� would be constant. The additional constraint

introduced by the threads makes py and � mu-

tually dependent. Clearly, reorienting the frame

does not eliminate this coupling of rotational and

translational motion.

Let us now �nd a set of task coordinates for

this constraint. Note that �p is smooth and that

for each p0 2 R6, rank
�
@�p

@p
(p0)

�
= 5. If we let

p1 = py and p2 =
�
� px � pz  

�T
, then

for each p0 2 R
6,

@�p

@p2
(p0) is invertible. From the

proof of Theorem 1 we may thus choose the task

coordinates x as x1 = p1 = py and x2 = �p. This

transformation is a global smooth di�eomorphism

whose inverse transformation is

 
p1
p2

!
=

2
6666664

x1

x2 +

0
BBBB@

2��x1
0
...

0

1
CCCCA

3
7777775
: (10)

Therefore x is globally a set of task coordinates

for this constraint.

Note that another valid choice of task coordin-

ates is x1 = �, x2 = �p. Thus, the position of the

end e�ector can be uniquely speci�ed by either



its travel or its rotation.

5 Summary and Conclusion

In this paper, we have explained why a Cartesian

task frame cannot be used to decompose hybrid

tasks that involve contact with non-Cartesian

constraints. We have also provided theoretical

justi�cation for Yoshikawa's more general notion

of task coordinates by proving that such coordin-

ates can be found for any holonomic constraint.

We have demonstrated this approach for the case

of a planar manipulator tracking a curved con-

straint and for the case of a 6-DOF robot tight-

ening a bolt.

This paper provides a formal theoretical frame-

work for specifying hybrid tasks and for designing

and analysing hybrid controls. For example, spe-

ci�c hybrid controls that were originally formu-

lated in Cartesian task coordinates (such as the

original control of [2]) can be recast in terms of

the generalized task coordinates described here

and applied to non-Cartesian constraints. This

framework has in fact been applied in [8] to exam-

ine the stability of three established hybrid con-

trols generalized in this fashion.
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