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Abstract - SeveraVLSI realizatiors of fuzzy systens have been propose in the literature in the recen years.
They employ analay or digital circuitry, offering more or less programmabilityimplementirg difference infer-
ene methodswith differert types of memberstp functiors aswell as differert antecedentsconnectivesThis
pape centes thiswide desig spae by fixing severdparametestha allow efficient VLSI implementatios of
programmal# fuzzy systens featurirg first, secoml and third orde accurag¢ approximationHardwae require-
mens are discussd and compare from the point of view of approximatim capabilily or precision thus at-
tempting to a formalization that has never been applied before to the field of fuzzy hardware.

Key-Words- Fuzzy systems, universal approximators, B-splines, VLSI desi@fCC'99 Proc.pp..6471-6476

1. Introduction

A relevart featue of fuzzy systensistha they are
univers& approximatos and hence potentialy suit-
able for any application The problem is how to de-
sign them [1]. On one side the numbes of inputs,
outputs ard correspondig linguistic labek covering
them hawe to be selectedOn the othe side the types
of memberstp functions antecedentsconnective
and fuzzy implication as well as the method of rule

aggregation and defuzzification have to be chosen.

VLSI implementatios of fuzzy systens offer the
advantagsof highinferene spea with low areaand
powe consumptionbut they lack of flexibility , that
is, the previousy commentd desig variables are
fixed in a fuzzy chip (for instane the maximum
numbe of inputs and outputs) Since flexibility isin-
creasd by programmabiliy of severdparameterst
is importart to seled efficiently these parametes to
achiewe agodad trade-of betwea hardwae simpli-
city and approximation capability.

Fuzz implication and the method of rule aggre-
gation and defuzzification are fixed when selecting
the Singleta (or zero-orde Takagi-SugenosMeth-
od of inference which is the mog suitabk for hard-
ware implementationOn the othe side the number
of labek per input and outpu depend on the archi-
tecture Architectures basel on agrid partition of the

input spacs are advantageaifor severa reasons.

Considerilg knowledge representatiana grid parti-
tion has semantt meanirg while considerig approx-
imation theory, the problam is simplified to local
piecewi® interpolation Besides from a hardware
point of view, circuitry is considerabt reducel since
a rule-active driven architectue can be employed.
Having selectd singleto fuzzy systens with agrid
architecturewe will resot to approximatio theory

to choose the programmable parameters efficiently.

Thispape isorganizel asfollows. Sectian 2sum-
marizes three types of singletan fuzzy systens that
are first, second ard third orde universa approxi-
matoss as well as suitabk for hardwae implementa-
tion. VLSI realizatiors of thes systens following
two approachsg are describé in Sectio 3. Finally,
Sectin 4 compars thes approachs showirg their
range of applicabiliy and giving gener& conclu-
sions.

2. Fuzzy systens in the contex of
approximation theory
A singleto fuzzy systen with uinputs,x=(xy, ...,
X,) and one outpu (y) establishein generda non-
linear relation betwea theinput (14, ..., 1) and output
(R) universasof discourseFormally, thismearsthat:

y = y(®): 1, xl,x .. xI,OR" = R (1)
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Considering, as we have selected, a fuzzy systenmLagrange and Spline interpolation [2]. In particular,
with a grid architecture, each input universe of dis- Lagrange interpolation of degree 1 is a B-spline inter-
course, |, is partitioned into klinguistic labels with  polation of degree 1. Singleton fuzzy systems have
a maximum overlapping degree @f Hence, L+1-a been studied as B-spline interpolators [3]-[4]. This is
intervals can be distinguished, as can be seen in Figsummarized in the following.

1. They are separated by the pointg {a,, ..., an;i},
where Nis L;-a. Given an input vectox,, the fuzzy
system identifies tha intervals, that is, the particular
grid cell, GG, to which the input belongs. As a sec-

ond step, the system provides the corresponding out- Given an universe of discoursgfartitioned by
put y(x,) by evaluating the active rules:

the points {g, &, ..., &}, and a positive entire k, a
a ) normalized B-spline of degree k qrid defined as:
S hpk(x) o

2.1. Normalized B-splines as membership
functions
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tive rules and g is its corresponding singleton value. where p = -k+1, -k+2, ..., N-1; and {ay;1, 842, -
The parameters that define this functiqfy) are  ag, ayjsq, ..., ik} are additional arbitrarily defined
a few of the global parameters that define the fuzzy points. Operatoe is a bounded difference operator,
system, yX). In this sense, a fuzzy system is viewed so that (x© &) is X - a, if X; > a, and zero other-
as a local piecewise interpolator that provides the wise.
piece y, for each GG grid cell. The interpolation These B-spline functions can be employed as
provided can be piecewise constant, piecewise linearmembership functions because they are local, posi-
piecewise quadratic, and so on, depending on wheth+ive, continuous, and monotonous [3]-[4]. They are
ery, is constant, linear or quadraticxn poly-nomials of degree k within the interval ja
In the context of mathematical approximation the- a,,,,4] and zero outside. Since we are interested in
ory, popular piecewise interpolation methods usually hardware implementation, we will focus on k=0, 1,

employed to approximate a given functiorn)f(from
which only several values, %(), are known are

and 2. Coverings of universes of discourse with this
type of membership functions are shown, respective-
ly, in Fig. 1a, b and c. The overlapping degreelis
k+1.
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Fig. 1: Different coverings of the input space with My = and

overlapping degrees of (a) 1, (b) 2, and (c) 3.

(ap+1_ap) [(ap+1_ap—1)



X:

i i X;
Hy = 1-py —Hy (6)

Approximation capabilities of singleton fuzzy

systems that employ these membership functions are

summarized in the following.

2.2. Fuzzy systems that are first order
accurate approximators

In the context of mathematical approximation the-
ory, given a function %): | ORY - R, the fuzzy sys-
tem yk) is said to be a k-th order accurate
approximator for ) if:

1) =Yl = SUR | F(R) = Y(R)] < M ()

where M is a constant that depends on the function f
and h=may¥max;; (g i+1 - &)} withi=1, ..., u; and
ii= 1, ..., N[4].
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For instance, fuzzy systems whose membership
functions are B-splines of degree 1 and which con-
nect them with the minimum operator provide first
order accurate approximation [4]. In this case, output
is continuous at the boundaries of the grid cells.

2.3. Fuzzy systems that are second order
accurate approximators

Singleton fuzzy systems that employ normalized
B-splines of degree 1 as membership functions and
the product or the general meet operator [5] as con-
nective,J, among antecedents are piecewise multi-

Fuzzy systems whose membership functions arelinear interpol_ators._Considering, fo_r simplicity, the
rectangles or B-splines of degree O (Fig. 1a) arecase of two dimensions, the output is given by:

piecewise constant interpolators, that is, the output is

constant for each grid cell:

1
S hpk(x)cpk
- k=1
1
)3 hpk(x)

Yp(X) = ¥ hp®ep=c, @

1

nHM =

k

Let us evaluate the error that this kind of fuzzy
systems provides when approximating a differentia-
ble function f&). Within each grid, GG, f(x) can be

expressed by its Taylor expansion around the point

Xo Where f&o) = ¢, so that the error in that grid cell
is given by:
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where [&; = Xjo| < |Xj = Xjq| Oi =1,..,u

Hence, they are first order accurate approxima-
tors. A feature of their output is discontinuity at the
boundaries of the grid cells.

Singleton fuzzy systems are generally first order
accurate approximators because:

1=y = 1R~ 3 Ao e
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Yp(Xp: Xp) = €19+ My (Cpp—Cqq) +
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M1 (Cqp—Cqq)+ My Ty (Cpp * €13 = Cpy =€) (1D)
where ¢ are the foura?, singleton values (for in-
stance, ¢=Yp(@1,p & p+1)) andpy™ has the expres-
sion in Equation (5).

When the connective is the product, equation
above can be expressed in function gfand »% as
follows:

Yp(Xg, Xp) = ax X, +bx, +cx +d (12)
where a, b, ¢, and d are constants.

These systems have been proved to be second or-
der accurate approximators [4]-[5]:
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where M is a constant. If the connective is the prod-
uct operator, the fuzzy system is equivalent to a
piecewise multilinear Lagrange interpolator of de-
gree 1in x[4]. In both cases, the output is continuous
but the first derivative is not continuous, in general,
at the boundaries of the grid cells.

2.4. Fuzzy systems that are third order
accurate approximators

Singleton fuzzy systems that employ normalized



B-splines of degree 2 are piecewise multiquadratic The other strategy is to design a fuzzy chip that

interpolators. Considering, for simplicity, the case of implements the different stages of the singleton fuzzy
two dimensions, the output is given by: inference mechanism, that is, they implement Equa-
tions like (12) and (15)). These stages are: calculation
of the membership degreegs(x;), (by membership

X, Xy X, function circuits, MFC’s) and the activation degrees

Mo (C3—C33) + M1 (C31=Ca3) + My (C3=C33) *  (f the rules, Bk(X), (by connective circuits), scaling

_ X1
Yp(Xqs Xp) = Cgzt Uy (C13—Cg3) +

X, X, with the singleton values, ¢ and addition. These
My CHy7(Cqq—Ci3—Cgq+Cgg) + fuzzy chips will be called MFC-based fuzzy chips be-
X, Xy cause their main difference with the previous ap-
My [Hy (€ p—Ci3—Cart Cag) + proach is that membership degrees are calculated
X, % explicitly. They will follow the massively parallel ar-
My [Hy (€51 —Co3—Cgq +Cag) + chitecture described in [6]. The programmable pa-

X, % rameters are again the poin{s @hich separate the
Hy CHy'(Cop—Co3—Car+Caz) (14) i+l intervals) and the singleton valugg c

o, _ The objective in any case is to obtain general-pur-

where g are the ninep, singleton values required pose fuzzy chips that can be adjusted to a particular

andpj"i takes' the expressions in Equation _(6). _ application by a digitally programming interface and
The equation above can be expressed in functionwhose inputs and output are analog signals. In par-
of x; and % as follows: ticular, we will consider current-mode signals so that

addition is reduced to wire connection and digitally
programmed scaling is implemented by digitally pro-
grammed current mirrors or D/A converters [7].
When implementing second-order accurate approxi-
wherea, ...,i, are constants. mators general meet operator or multiplier can be
Singleton fuzzy systems that employ normalized chosen as antecedents’ connective. As a matter of
B-splines of degree k as membership functions andfact, since the meet operator (in the two-dimensional
the product as connective among antecedents ar€ase) is a piecewise linear approximation of the prod-
(k+1)-th order accurate approximators [2], [4]. For uct operator with an error af6.25% (3 bits), we will

the case k=2, the error is bounded as follows: focus on employing analog multipliers. Hardware is
simplified if all the intervals k+1-a have the same
3 (16) width, h, specially in the MFC-based approach be-
- cause the denominators in the expressions of the
_ ~ membership degrees (Equations (5)-(6)) are constant
where M is a constant. For k=2, the output and its g that divider circuits are not required. We will first
first derivative are continuous at the boundaries of -gnsider this type of partition. Taking into account
the grid cells. that the output signal is always given with a resolu-
tion of q bits, the circuitry required is given in the fol-
lowing.

_ 2.2 2 2 2
yp(xl, Xo) = axyXy+bX X5+ CX; +dX Xy +

ex;X, + fx2+gx§+hx1+i (15)
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3. Hardware realization of universal
approximator fuzzy systems

There are basically two VLS strategies to imple- 3-1. Memory-based approach
ment the universal approximator fuzzy systems de- First order accurate approximators:
scribed in the previous Section. One of them is to  Look-up tables correspond to the memory-based
design a fuzzy chip that implements directly the approach to implement first-order accurate approxi-
Equations (8), (12) and (15). Programmable parame-mators. The input spaces are partitioned irtonger-
ters of this approach are the poinjsthat allow iden-  vals of the same width. The output is constant for
tifying the active grid cell and the constants (for everyone of the® grid cells. The hardware required
instance a, b, ¢, and d in Equation (12)) that define thejs:
output in that grid cell. These chips will be called - A memory that stores”2words of q bits.
memory-based fuzzy chips although they will also - u A/D converters of p bits to address the memory.
need scalers, adders, multipliers and squarers. - 1 D/A converter of g bits to obtain an analog output.




Second order accurate approximators: 3.2. MFC-based approach
Let us consider the impIemenFation ofasingleton Given L labels per input space distributed uni-
fuzzy system whose membership functions are NOT-formly (defining intervals of the same width), the

malized B-splines of degree 1 and whose antece_dentﬁumber of singletons which should be stored afe L
are connected by the product operator. The inputy 5y annroximator. The global memory that stores

spaces are partitioned into,{LL) intervals where Lis
the number of linguistic labels covering the i-th input
space. Let us suppose, for simplicity, that L =Ii.
Within each grid cell, the output is a u-linear function
(like Equation (12)) that is defined by' parameters.
Considering that all the (L-1) intervals are of the
same width, the hardware required is:
- A memory of [2(L-1)} words of q bits that can be
partitioned into 2 memories for parallel processing.
- u A/D converters of log(L-1) bits that address the
memory.
- 211 analog multipliers.
- 2Y D/A converters of q bits to provide the scaling
with the 2! parameters of each grid cell.
Considering for instance the case of two dimen-
sions, this circuitry is required to obtain the output in
Equation (12) by grouping the signals as follows:

Yp(Xp Xp) = Xp(ax; +b) +(cx +d) (17

Third order accurate approximators:
Let us consider the implementation of a singleton

fuzzy system whose membership functions are nor-

these parameters should also be partitioned drtto
parts to allow massively parallel processing [6]. This
approach requires less parameters to store, because
each singleton parameter is employed withtgrid

cells. As a drawback, multiplexing circuitry have to

be used to identify which operator blocks (MFC'’s
and scalers) are associated with each singleton [6].

First order accurate approximators:

Let us consider the implementation of a singleton
fuzzy system whose membership functions are nor-
malized B-splines of degree 1 and whose antecedents
are connected by a minimum operator. The hardware
required is:

- A global memory that storeslwords of q bits par-
titioned into 2 memories.

- u A/D converters of log(L-1) bits that address the
memory.

- 2Y minimum circuits.

- 24 D/A converters of g bits to provide the scaling
with the singleton values.

- u MFC’s that provide the membership degrees, by
calculatingy,(x;) (Equation (5)).

malized B-splines of degree 2 and whose antecedents Multiplexors (and current mirrors).

are connected by the product operator. The input
spaces are partitioned into (L-2) intervals of the same

width. Within each grid cell, the output is a u-qua-
dratic function (like Equation (15)) that is defined by
3" parameters. The hardware required is:
- A memory of [3(L-2)} words of q bits that can be
partitioned into 8 memories.
- u A/D converters of log(L-2) bits that address the
memory.
- (2*"%-1)2= 2'-2 analogue multipliers.
- 3Y D/A converters of q bits to provide the scaling
with the 3' parameters of each grid cell.
- u analog squaring circuits.

Considering for instance the case of two dimen-
sions, this circuitry is required to obtain the output in
Equation (15) by grouping the signals as follows:

yp(xl, X5) = xg(axi +bx; +c) +
x2(dxi+ex1+f)+gxi+hx1+i (18)

Several current mirrors are required, like in the

former case of second order accurate approximators

to replicate signals such ag’or .

Second order accurate approximators:

The hardware required to implement a singleton
fuzzy system with B-spline membership functions of
degree 1 connected by the product is very similar to
the previous one. Grouping signals conveniently, itis
the following:

- A global memory that storeslwords of q bits par-
titioned into 2 memories.

- u A/D converters of log(L-1) bits that address the
memory.

- 211 analogue multipliers.

- 2 D/A converters of g bits to provide the scaling
with the singleton values.

- u MFC'’s that provide the membership degrees, by
calculatingu,™'. They are very simple linear circuits
since the denominator in Equation (5) is a constant.
- Multiplexors (and current mirrors).

Third order accurate approximators:
The hardware required to implement a singleton
fuzzy system with B-spline membership functions of

degree 2 connected by the product is the following:




- A global memory that storesiwords of q bits par- size in bytes

titioned into 3' memories. T 20K mem-3rd
- u A/D converters of log(L-2) bits that address the ] ]
15K 1 mem-1st
memory. i
- (2"-1-1)2= 22 analog multipliers (by grouping the 10K 1 mem-2nd
signals conveniently). I 1
- 3Y D/A converters of q bits to provide the scaling 5Kt 1 vEC-based
with the singleton values. 0
- 2u MFC'’s (squaring circuits) that provide the mem- 5 15 25 35 Jﬁabms
bership degrees, by calculating® andp,X in Equa- size in bytes @)
tion (6) (denominators are again constant) . mem-3rd
- Multiplexors (and current mirrors). T 2.5M1 '
2M 1 mem-1st
1.5M
4, Discussion and conclusions M} { mem-2nd
Given a range of applications, that is, a group of 0.5Mr 1
functions to approximate, the VLSI designer has to 0= T Pased
evaluate which implementation approach is more ef- —> labels
ficient. Considering that derivatives of the functions (®)

Fig. 2: Memory requirements for memory- and MFC-lihse

to approximate can be estimated, the designer can ap approaches for p = q = 7 bits and (a) U = 2, (b) u = 3

ply Equations (10), (13) and (16) to obtain the value

of h for a given precision and for each type of approx- ) _

imator. Once h, and hence L, are known the results ofcUits (which —are usually very costly). This

previous Section can be used to choose an efficientomplexity is again justified if the number of labels

realization. General results are the following. decreases sufficiently or if the design objective is to
Comparing the memory-based approaches, look-realize implementations with on-chip tuning [7].

up tables are not usually efficient since they offer a

low order accurate approximation with a very high
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