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Abstract: - In this paper we propose an enhanced control structure for a special class of nonlinear SISO time
invariant plants. This shows how the combination of Fourier transform and classical control structure can be
applied to iterative feedback control for cyclic processes.
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1 Introduction
Nowadays, most of the control methods base on
feedback control. However, for cyclic processes it is
useful to apply some specific methods. Actually,
adaptive control and iterative learning algorithms are
quite popular [1]. Alternatively, good results can be
achieved by combination of classical and intelligent
control [2]. In this paper we will demonstrate an
enhanced control structure for a special class of
nonlinear SISO timeinvariant plants.

2 Background
In approximation, many plants can be expressed by a
structure according to figure1.

Figure 1: Plant structure.

Generally, the controller must be specially designed
depending on the nonlinear function. However, to use
an automatic algorithm for cyclic processes we can
take advantage of the cyclic characteristic.

Figure 2: Control structure.
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The control error can be reduced by modification of
the input signal per period. Usually the variation
method is an iterational process in time domain. That
implies the drawback of slow improvement rates and
substantial remaining offset basing on the lack of any
relational description of input and output.
Variation methods in frequency domain can achieve
good results more rapidly. But for rapid converging
these methods imply the need on complicated
algorithms. The structural implementation is shown in
figure 2.

The setpoint signal and the output signal are
transformed to complex Fourier coefficient vectors
W*=FFT{w(0 ... T)} and Yk-1* of one single period k
within time T. Out of the coefficient ratios Uik-1*/Yik-1*
a frequency depending gain vector Uk* can be
calculated. For a linear plant this vector is
corresponding to the frequency response. Therefore, if
we multiply setpoint coefficients with inverse gain
values the first manipulated signal u(t) will almost
compensate linear damping, especially for low
frequencies (figure 3).
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Figure 3: Multiplying linear correction.

For nonlinear plants the nonlinearity will result in
additional higher order output coefficients, for
example Y2

k
* , Y3

k
*, depending on lower order input

coefficients, for example U1
k
*. To remove their

influence to the output signal we have to subtract
them from the input signal, for example using U2

k+1
*

and U3
k+1

* (figure 4).
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Figure 4: Additive nonlinear correction.

It is obvious, that every modification of input
coefficients will lead to a change of many higher
order output coefficients. Therefore, the compen-
sation of those coefficients must be done by iteration.
The lower frequencies will iterate first, iteration of
higher order frequencies will last for longer because
they are effected meanwhile by the changes of the
lower coefficients. To prevent the system to start
swinging from period to period it is necessary to
define a damping factor [3]. By using a combination
of multiplicative and additive correction it is possible
to enhance the results starting from the linear to the
nonlinear plant depending on this damping multiplier
(figure 5).



3 Restrictions
Using the combined control algorithm there are some
restrictions for stability purposes. First of all, the
plant itself must be BIBO stable. Furthermore, the
linear plant must maintain at least first order lag
system. Additionally, gain must be noticeable below
one where phase angle is near 180°. Finally, in some
cases it also depends on the nonlinear characteristic
itself if the controlled system will be stable [4].

In addition to the inherent restrictions it is necessary
to define some additional rules for the algorithm, too.
To receive reasonable results for the multiplication
all coefficients ratios without sufficient excitement
have to be set to zero. Furthermore, the correcting
coefficients must be limited to a value where the
correcting signal u still remains within adjusting
rage.

4 Results
Using the Fourier control algorithm for a structure like
in figure 1 the results will depend on the plant and
nonlinearity.
Exemplarily, the effects are demonstrated below
utilising a bounding nonlinearity (figure 6) in
combination with a first order lag system. Saturation
curves are characteristic for a large number of
nonlinear plants.

Figure 6: Nonlinearity.

Figure 7: Setpoint value cycle.

Figure 5: Maximum error depending on damping factor.



The setpoint cycle only contains pretty low frequency
coefficients, much lower than the maximum actuator
frequency.
It is obvious, that the maximum error rate decreases
very fast within the first iteration steps. The reason is,
that at the beginning the compensation of the low
frequency linear coefficients takes place dominantly.
Past 40 iterations the output cycle is almost exactly
conform to the setpoint cycle (figure 8), even for
higher frequency coefficients.

Figure 8: Output value cycles.

The iterational process finally results in an optimal
feedforward trace (figure 9). This indicates the main
difference to classical control algorithms:
We do obtain a time displacement toward prior time,
the control algorithm leads to a predetermination.
Furthermore, high frequent errors due to amplitude
depending boundary are compensated.

Figure 9: Correcting value cycle.

A Fourier transform of the setpoint value cycle and the
correcting value cycle demonstrates the changes within
Fourier domain (figure 10). Because of the
nonlinearity it is necessary to generate much higher

frequencies to finally receive the desired output. For
adequate reduction of the control error the frequencies
within the correcting value cycle have to be calculated
up to ten times the maximum frequency of the setpoint
value cycle.

Figure 10: Setpoint value and correcting value
coefficients.

5 Summary
Besides linear compensation within the first iteration
steps the decrease of the maximum control error
mainly depends on compensation of higher order
frequencies due to nonlinearities. Additive correction
will be sufficient in many cases, but iteration speed is
inevitably limited by low frequency modifications
effecting high frequency coefficients. Therefore,
iteration speed depends on degree and characteristic
of the nonlinearity and on the number of coefficients.
Therefore, iteration can take quite a time.
To get a universal solution to speed up iteration, it
would be necessary to evaluate the relation between
any input frequency coefficient and all output
coefficients. Although it is fixed relation, generally it
will be very difficult to detect it by use of classical
methods [4].
The combination of proportional and additive
correction is offering a reasonable solution to retrieve
both, fast iteration time and high iteration accuracy.
Iteration will usually converge for low damping
multipliers.

6 Conclusion
Within this paper we proposed an enhanced control
structure for nonlinear control that takes advantage of
the ability of cyclic processes. It is applied to
prediction tasks by means of input and output Fourier
coefficients. This basic approach can be used to
achieve better accuracy than common control systems,
i.e. for example in use for fatigue lifetime stability



research or for enhancement of synchronous run of
rotating systems.
Actually, the presented control method is not the
optimal solution at all. There are too many restrictions
now. But these first results prove that control within
Fourier domain is a very promising approach for
control of a wide range of cyclic processes. It
represents a good starting point for further research
activities.
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