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Abstract: { A time-e�cient algorithm for the com-

putation of Takagi-Sugeno inferences is presented

which is suitable for implementation on advanced

DSPs. With such a procedure, an inference de-

pending on 6 inputs can be computed in less than

1.5�. This speed is counterbalanced by possible

huge storage requirements and the problem of re-

ducing the number of data to be stored is also

brie
y addressed.
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1 Introduction

Recent developments in the �eld of fuzzy systems

implementation (e.g. [1][2][3]) deal with the mixing

of classical hardware support for conventional lin-

ear processing with high-performance solution for

inference computation.

This hybrid approach aims at providing a unique

hardware-software module which is able to exe-

cute classical linear-processing primitives as well

as specialized routines performing fuzzy infer-

ence to �t the need of a an embedded con-

troller/classi�er/processor attending many tasks

with di�erent characteristics in di�erent time slices.

To at address the need for fast processing de-

pending on an large number of variables in the

framework of Takagi-Sugeno inference mechanisms

(whose implementation peculiarities seem to be

vastly neglected by fuzzy hardware literature) we

here extend the concept of piecewise-linear infer-

ence [4] to piecewise-quadratic inference.

With this, we obtain a regular inference scheme

which can be given an extremely e�cient imple-

mentation. Such an implementation needs a com-

putational e�ort which does not increase exponen-

tially with the number of inputs but requires large

amounts of memory.

To partially cope with storage requirements we

also devise a mechanism to trade memory for speed.

To do so we exploit the relationship between sam-

ples of the same fuzzy systems at neighboring

points. Such a relationship allows to compute the

samples that we may have chosen not to store,

slowling the inference procedure.

2 Piecewise-Quadratic Inference

The fuzzy system under consideration maps the

real vector x = (x1; : : : ; xn) 2 [0; 1]n into a sin-

gle real variable. For each xi, de�ne mi fuzzy sets

Ai
1
; : : : ; Ai

mi
depending on an increasing sequence

of points 0 = ai
1
� ai

2
� � � � � aimi

= 1 so that Ai
j

has a triangular shape centered in aij and vanishing

before aij�1 and after aij+1.

With these classical triangular membership func-

tions we may construct the preconditions of the

rules de�ning the systems. They are all the pos-

sible n-conjunctions x1 2 A1

j1
^ � � �^xn 2 An

jn
mod-

eled by the piecewise-linear operator � proposed

and discussed in [4]

�[t1; : : : ; tn] = (1)

1

2n

X
I1;I2

maxfmin
i2I1

ftig+min
i2I2

ftig � 1; 0g

where the sum is taken over all the possible par-

titions of the set f1; : : : ; ng in two subsets I1 and

I2.
We here concentrate on Takagi-Sugeno inference

in which consequences are expressed as �rst-order
polynomials of the inputs Cj1;:::;jn(x) to obtain

f(x) =

P
j1;:::;jn

Cj1;:::;jn(x)�[A
1
j1
(x1); : : : ; An

jn
(xn)]P

j1;:::;jn
�[A1

j1
(x1); : : : ; An

jn
(xn)]

(2)

The inference procedure develops in strict anal-

ogy with what can be done in the piecewise-a�ne
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Figure 1: a) The Takagi-Sugeno fuzzy system is

quadratic in the simplex �p. b) Simplex normaliza-

tion easing quadratic interpolation

case [5]. First a �ner sequences of points bij is con-

structed which is made of the aij along with the

middle points of the intervals [aij ; a
i
j+1], i.e. bij =

ai
(j+1)=2 when j is odd and bij = 1

2
(aij=2 + aij=2+1)

when j is even (j = 1; : : : ; 2mi � 1).

Then we assume that �|i is such that bi
�|i
� xi <

bi
�|i+1

and set

�
i =

(
2Ai

(�|i+3)=2
(xi) if �|i is odd

2Ai
�|i=2

(xi) if �|i is even
(3)

Then, let p : f1; : : : ; ng 7! f1; : : : ; ng be a permu-
tation such that �p(1) � �p(2) � � � � � �p(n). The

n+1 points v
0
; : : : ; vn are such that vi

0
= bi

�|i
if �|i is

odd while vi
0
= bi

�|i+1
if it is even, and n more points

v
1
; : : : ; vn are obtained as

v
i
k =

(
bi
�|i
+ bi

�|i+1
� vik�1 if i = p(k)

vik�1 otherwise
(4)

It can be proved [4] that x belongs to the simplex

�p which is the convex hull of v
0
; : : : ; vn, and that

the �i are the normalized coordinates of the input

point in �p. From the same analysis we also get

that if Cj1;:::;jn(x) are �rst-order polynomials, f(x)

is quadratic in each �p. Figure 1-a) shows where

the simplex �p is located when n = 3 and the input

x is such that �|1 = 2, �|2 = 1 and �|3 = 4.

Note now that any quadratic form is the linear

combination of the n square terms (xi)2, of the

n(n � 1)=2 mixed terms xi
0

xi
00

, of n further linear

terms xi and of a �nal constant for a total of

N = n(n + 3)=2 + 1 coe�cients. Hence, in each

�p, the system is the second-order interpolation

of its own samples in N points ui. Let now w

be a vector function such that w(x1; : : : ; xn) =

[1; x1; : : : ; xn; (x1)2; : : : ; (xn)2; x1x2; : : : ; xn�1xn],

de�ne the matrix W
�|1;:::;�|n;p

=

[w(u
1
)t; : : : ; w(uN )

t]t and the vector f
�|1;:::;�|n;p

=

[f(u
1
); : : : ; f(uN )]

t. With this one has

f(x) = w(x)tW�1
�|1;:::;�|n;p

f
�|1;:::;�|n;p

(5)

where the dependence of the matrix W and the

vector f on the cell indexed by �|1; : : : ; �|n and on

the �p within that cell is highlighted.

A convenient choice for the sampling set is the

one including the vertexes of �p and the midpoints

of its sides. A �rst property of this choice is thatW

is surely non-singular. Actually, from the positions

of the possible �p it can be easily seen that sam-

pling f at the simplex vertexes and at the side mid-

points means sampling it on a hyper-rectangular

grids which is the Cartesian product of the se-

quences made of bij and the midpoints between bij

and bij+1 for a total of
Qn

i=1(4mi � 3) samples.

So far, (5) entails the construction and inversion

of a matrix which strongly depends on the simplex

containing the input point. This procedure can be

reformulated in few simpler steps.

To do so assume �rst that the cell containing x

is shifted to the origin and normalized to the unit

cube by proper scaling so to changeW
�|1;:::;�|n;p into

Wp. Then let Q
p
be the linear transformation that

maps v
0
in the origin and the straight lines vk � v

0

for k = 1; : : : ; n, to the Cartesian axes so that �p is

mapped to a standard simplex �̂ with n orthogonal

unit sides. Figure 1-b) shows how this transforma-

tion looks like for the case in Figure 1-a).

Exploiting Q
p

one may de�ne Ŵ =

[w(Q
p
u
1
)t; : : : ; w(Q

p
uN )

t]t to obtain

f(x) = w(Q
p
x)tŴ

�1
f
�|1;:::;�|n;p

(6)

This new formulation of the interpolation proce-

dure is favorable as the term f
�|1;:::;�|n;p

which ac-

counts for the needed samples is left unchanged

while Ŵ
�1

is now �xed and can be pre-computed.

Moreover, Q
p
turns out to be a trivial trans-

formation. To see why note that the coordinate

vector [�p(1); �p(2); : : : ; �p(n)] is a linear transforma-

tion of x (3) and identi�es any point x 2 �p [4]

(see Figure 1-a)). Moreover, in this coordinate sys-

tem v
0
corresponds to [0; 0; : : : ; 0], v

1
corresponds

to [1; 0; : : : ; 0], v
2
corresponds to [1; 1; : : : ; 0] up to



vn which corresponds to [1; 1; : : : ; 1]. From the def-

inition of �p we also get that Q
p
v
0
= [0; 0; : : : ; 0],

Q
p
v
1

= [1; 0; : : : ; 0], Q
p
v
2

= [0; 1; : : : ; 0] up to

Q
p
vn = [0; 0; : : : ; 1]. Hence Q

p
is uniquely iden-

ti�ed in terms of the �p(i) coordinates vector. In

fact, in that coordinate system we have that the i-

th component of Q
p
x is �p(i)��p(i+1) for i < n and

�p(n) for i = n. This structure of Q
p
is extremely

favorable as the quantities �i have already to be

computed and sorted to �nd �p and thus f
�|1;:::;�|n;p

and are already available to be fed into the O(n)
procedure giving Q

p
x.

As a last step, the structure of the matrix Ŵ
�1

must be investigated. Such a structure is better

understood if the the points ûi = Qp
ui are sorted

so that û
0
is the origin, û

1
; : : : ; ûn are the middle

points of the orthogonal sides, ûn+1; : : : ; û2n are the

other vertexes of those sides and ûi for i > 2n are

all the other sampling points.

With this, trivial computations reveal thatW�1

can be written as
2
666666666666666664

1 0 0 0

�3
... 4In �4In 0

�3

�2
... �4In 2In 0

�2

4
... �4Cn 0 4In(n�1)=2

4

3
777777777777777775

where In is the n-dimensional identity matrix while

Cn is a n(n� 1)=2 � n matrix whose rows feature

only two non vanishing entries which are equal to 1

and appear in all the possible positions. Obviously,

the large number of null entries in W�1 and its

intrinsic regularity bene�t the actual computation

whose quadratic complexity depends only on Cn

and In(n�1)=2.

3 Memory Saving

The non-exponential time-complexity of the pro-

posed inference depends on the possibility of re-

trieving all the f(ui) for i = 0; 1; : : : ; N � 1 in con-

stant time, i.e. on the availability of a possibly huge

memory support.

Yet, for every x 2 [a1j1 ; a
1

j1+1
] � � � � �

[anjn ; a
n
jn+1

], the value f(x) depends only on

the coe�cients of the 2n �rst-order polynomials

Cj1;:::;jn; Cj1+1;:::;jn; : : : ; Cj1+1;:::;jn+1 so that the 5n
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Figure 2: Though quadratic in each of the 233! in

which this cell can be partitioned, f is quadratic

also along each of the segments drawn in the �gure

samples needed by the proposed procedure depend

on only (n+ 1)2n independent parameters.

A very useful consequence of this dependence is

that some samples can be surely computed from

the knowledge of other samples. To formalize these

useful relationships let us de�ne the sample grid as

the cartesian product of the sequences cij de�ned so

that cij = bi
(j+1)=2

when j is odd and cij =
1

2
(bi

j=2
+

bi
j=2+1

) when j is even (j = 1; : : : ; 4mi � 3).

Then, let us concentrate on the hyperrectangu-

lar cell x 2 [c1
4j1�3

; c1
4j1+1

] � � � � � [cn
4jn�3

; cn
4jn+1

],

partitioned into 2nn! simplexes in which f is

quadratic. It can be proved that f is quadratic

also on larger subsets, namely on all the sides of

the coarser grid which is the cartesian product

of fb2j1�1; b2j1 ; b2j1+1g� � � � � fb2jn�1; b2jn ; b2jn+1g.
Hence, once that 3 samples out of the 5 laying on

any of the previous segments, are known, also the

other 2 are known.

Figure 2 shows these segments for n = 2 and

n = 3 highlighting that some samples in the cell do

not lay on any of them. In any case, a simple com-

putation indicates that, for a n-dimensional cell,

3n+2n3n�1 sampling points belong to at least one

of these segments.

We may now assume that the samples corre-

sponding to the coarser grid are stored (for a total

of
Qn

i=1(2mi � 1) samples). It can be easily seen

that n+1 out of the n(n+3)=2+1 samples in each

simplex are located at points of this grid and that

n further samples can be interpolated in constant

time knowing other n values on the same grid. The

remaining n(n � 1)=2 samples are then retrieved

from memory to allow �nal intrpolation.

With this scheme, the number of samples to be

store is
Q

i=1(4mi�3)�
Pn

j=1(2mj�2)
Q

i6=j(2mi�

1) while the time needed for an inference is in-

creased by the need of n further fetches from mem-

ory and subsequent quadratic interpolation. To as-
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Figure 3: Segments used for inteprolation of miss-

ing samples starting from smaples on the coarse

grid in a case with n = 3

certain what the impact of this interpolation is on

the time complexity of the inference procedure we

may concentrate on any of the segments in Figure

2 and identify the points in which the samples are

known with their distance from the end of the seg-

ment which belongs to the simplex under consider-

ation, i.e. 0, 1=2 and 1. The point at which we need

the sample value correspond to a coordinate value

of 1=4. Figure 3 shows the usual n = 3 case and the

segments entailed in the inference depending on a

point x belonging to a particular simples. The ad-

ditional samples on the coarse grid to be fetched

are highlighted along with the segments to which

they and the missing samples belong.

We may now restrict f to one of these segments

and note that, as f is quadratic then

det

2
664

0 0 1 f(0)

1=4 1=2 1 f(1=2)

1 1 1 f(1)

1=16 1=4 1 f(1=4)

3
775 = 0

from which we easily obtain f(1=4) =

(1=8) [3f(0) + 6f(1=2) � f(1)]. As such an

expression contains only multiplications and a

division by 8 is can be straigthforwardly imple-

mented in most common DSPs with an overhead

of 2 multiplications, 2 sums and 1 shift.

4 Simulation Results

The proposed procedure has been manually

coded into the native assembly language of the

TMS320C6201 exploiting only one of the two avail-

able data paths so to leave the other for applications

running in parallel with fuzzy inference. Loops have

been unrolled by a preprocessing stage which over-

laps segments of code designed to schedule the dif-

ferent tasks on the 4 available units and optimizing

their exploitation.

n cycles cycles saved
(full storage) (reduced storage) storage

1 61 70 8
2 83 101 112
3 122 149 1176
4 156 192 10976
5 207 252 96040
6 253 307 806736

Table 1: Simulated performance of the proposed

inference

Table 1 reports the number of clock cycles needed

to perform a single inference with n from 1 to 6

with and without the addition of the sample inter-

polation procedure. Both results are obtained sim-

ulating the running code on the trial version of the

development tools for the the TMS320C6201. The

number of samples whose memorization is unneces-

sary is also reported assuming m1 = m2 = mn = 5.

Note how on a 200MHz device an inference de-

pending on 6 inputs can be computed in about

1.5�s. As a comparison, note that for any input

point there are 64 �ring rules whose �rst-order poly-

nomial consequence entails at least 6 multiplica-

tions and additions. Thus a straightforward com-

putation would entail not less than 768 cycles, i.e

more than 3.8�s even with this gross underestima-

tion.
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