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Abstract: — A time-efficient algorithm for the com-
putation of Takagi-Sugeno inferences is presented
which is suitable for implementation on advanced
DSPs. With such a procedure, an inference de-
pending on 6 inputs can be computed in less than
1.5u. This speed is counterbalanced by possible
huge storage requirements and the problem of re-
ducing the number of data to be stored is also
briefly addressed.
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1 Introduction

Recent developments in the field of fuzzy systems
implementation (e.g. [1][2][3]) deal with the mixing
of classical hardware support for conventional lin-
ear processing with high-performance solution for
inference computation.

This hybrid approach aims at providing a unique
hardware-software module which is able to exe-
cute classical linear-processing primitives as well
as specialized routines performing fuzzy infer-
ence to fit the need of a an embedded con-
troller/classifier /processor attending many tasks
with different characteristics in different time slices.

To at address the need for fast processing de-
pending on an large number of variables in the
framework of Takagi-Sugeno inference mechanisms
(whose implementation peculiarities seem to be
vastly neglected by fuzzy hardware literature) we
here extend the concept of piecewise-linear infer-
ence [4] to piecewise-quadratic inference.

With this, we obtain a regular inference scheme
which can be given an extremely efficient imple-
mentation. Such an implementation needs a com-
putational effort which does not increase exponen-
tially with the number of inputs but requires large
amounts of memory.

To partially cope with storage requirements we
also devise a mechanism to trade memory for speed.
To do so we exploit the relationship between sam-
ples of the same fuzzy systems at neighboring
points. Such a relationship allows to compute the
samples that we may have chosen not to store,
slowling the inference procedure.

2 Piecewise-Quadratic Inference

The fuzzy system under consideration maps the
real vector z = (z!,...,2") € [0,1]" into a sin-
gle real variable. For each z*, define m; fuzzy sets

L ,Afni depending on an increasing sequence
of points 0 = a} < ab < --- <al, =1 so that A;-
]

% and vanishing

has a triangular shape centered in a
before aé-_l and after a§-+1.

With these classical triangular membership func-
tions we may construct the preconditions of the
rules defining the systems. They are all the pos-
sible n-conjunctions z! € A}l A---ANzx™ € A;-‘n mod-
eled by the piecewise-linear operator ©® proposed
and discussed in [4]
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where the sum is taken over all the possible par-
titions of the set {1,...,n} in two subsets I; and
Is.

We here concentrate on Takagi-Sugeno inference
in which consequences are expressed as first-order
polynomials of the inputs Cj, .. ;. (z) to obtain
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f(z) = > O[AL (1), A7 (am)]
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The inference procedure develops in strict anal-
ogy with what can be done in the piecewise-affine



Figure 1: a) The Takagi-Sugeno fuzzy system is
quadratic in the simplex o;,. b) Simplex normaliza-
tion easing quadratic interpolation

case [5]. First a finer sequences of points b;- is con-
structed which is made of the a} along with the
mlddle points of the intervals [a],aﬁ_l] ie. b
(]+1)/2 when j is odd and bZ = 1(a ai iy + a]/ZH)
when j is even (5 = 1,. Zmi —1). . .
Then we assume that jz- is such that b}, < z' <
b3, +1 and set

N = {QA?J cr3)2(2)
2A]/2( )
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Then, let p : {1,.
tation such that X”
n+1 pomts Vg, - -
odd while vj = b- 41 if it is even, and n more points
Viy...,0, are obtalned as
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It can be proved [4] that z belongs to the simplex
op which is the convex hull of v,...,v,, and that
the A\* are the normalized coordinates of the input
point in 0,. From the same analysis we also get
that if Cj, . ;, (z) are first-order polynomials, f(z)
is quadratic in each o,. Figure 1-a) shows where
the simplex o0y, is located when n = 3 and the input
z is such that 731 =2, 72 = 1 and 73 = 4.

Note now that any quadratic form is the linear
combination of the n square terms (z%)?, of the
n(n — 1)/2 mixed terms z% z'", of n further linear

if i = p(k)

otherwise

i
— Uk

(4)

terms z' and of a final constant for a total of
N = n(n+ 3)/2 + 1 coefficients. Hence, in each
op, the system is the second-order interpolation
of its own samples in N points u;. Let now w

be a vector function such that w(z!,...,z") =
[zt . 2 (2h)2, ... (™), o2, . e L2,
define the matrix ﬂ]h P =
w(ug)t, ..., w(uy)!]? and the vector =

1 N _le Jnap
[f(wy)s---, f(uy)]t. With this one has

f(z) = Q(—)tﬂjl? Jnapijh wJnsP

(5)

where the dependence of the matrix W and the
vector f on the cell indexed by 71,...,7, and on
the o), within that cell is highlighted.

A convenient choice for the sampling set is the
one including the vertexes of o}, and the midpoints
of its sides. A first property of this choice is that W
is surely non-singular. Actually, from the positions
of the possible o, it can be easily seen that sam-
pling f at the simplex vertexes and at the side mid-
points means sampling it on a hyper-rectangular
grids which is the Cartesian product of the se-
quences made of b;- and the midpoints between b;-
and b§'+1 for a total of []!"_;(4m; — 3) samples.

So far, (5) entails the construction and inversion
of a matrix which strongly depends on the simplex
containing the input point. This procedure can be
reformulated in few simpler steps.

To do so assume first that the cell containing z
is shifted to the origin and normalized to the unit
cube by proper scaling so to change W into

Jl:"'ajnap
ﬂp. Then let gp be the linear transformation that

maps v, in the origin and the straight lines v;, — v,
for k =1,...,n, to the Cartesian axes so that o, is
mapped to a standard simplex & with n orthogonal
unit sides. Figure 1-b) shows how this transforma-
tion looks like for the case in Figure 1-a).
Exploiting gp

[w(Qu)",- -,

one may define W =

w(gpuN)t]t to obtain

f(z) (6)
This new formulation of the interpolation proce-

dure is favorable as the term fj1 i which ac-
—JLlaesny

counts for the needed samples is left unchanged

. x.—1 .
while W is now fixed and can be pre-computed.
Moreover, gp turns out to be a trivial trans-

= w(gpz)tﬂflf

_jly"'ajnap

formation. To see why note that the coordinate
vector (NP \P2) | AP(M)] is a linear transforma-
tion of z (3) and identifies any point z € o, [4]
(see Figure 1-a)). Moreover, in this coordinate sys-
tem v, corresponds to [0,0,...,0], v; corresponds
o [1,0,...,0], vy corresponds to [1,1,...,0] up to



v,, which corresponds to [1,1,...,1]. From the def-
inition of o, we also get that pro = 10,0,...,0],
= [1,0,...,0], QPQZ = [0,1,...,0] up to
= [0,0,...,1]. Hence gp is uniquely iden-

tified in terms of the A coordinates vector. In
fact, in that coordinate system we have that the ¢-
th component of gpg is AP — \2(i+1) for § < n and

(") for i = n. This structure of gp is extremely

favorable as the quantities A’ have already to be

computed and sorted to find o, and thus ijl i

and are already available to be fed into the O(n)
procedure giving gpg.

As a last step, the structure of the matrix ﬂ_l
must be investigated. Such a structure is better
understood if the the points 4; = gpgi are sorted
so that @, is the origin, @,,...,4, are the middle
points of the orthogonal sides, i, , 1, ..., s, are the
other vertexes of those sides and 4; for i > 2n are
all the other sampling points.

With this, trivial computations reveal that W !
can be written as

1 0 0 0
-3
: 41, —4I, 0
-3
—2
8 I\ 2L, 0
-2
4
: _4gn 0 4ln(n—1)/2
4

where I, is the n-dimensional identity matrix while

C,, is a n(n — 1)/2 x n matrix whose rows feature
only two non vanishing entries which are equal to 1
and appear in all the possible positions. Obviously,
the large number of null entries in W~! and its
intrinsic regularity benefit the actual computation
whose quadratic complexity depends only on C,
and L, 1) /o-

3 Memory Saving

The non-exponential time-complexity of the pro-
posed inference depends on the possibility of re-
trieving all the f(u;) fori =0,1,..., N — 1 in con-
stant time, i.e. on the availability of a possibly huge
memory support.

Yet, for every z € [ajl-l,a}lﬂ] X e X
[a} ;a7 1], the value f(z) depends only on
the coefficients of the 2" first-order polynomials

n
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Figure 2: Though quadratic in each of the 233! in
which this cell can be partitioned, f is quadratic
also along each of the segments drawn in the figure

samples needed by the proposed procedure depend
on only (n + 1)2" independent parameters.

A very useful consequence of this dependence is
that some samples can be surely computed from
the knowledge of other samples. To formalize these
useful relationships let us define the sample grid as
the cartesian product of the sequences c? defined so

i i 1(pi
that ¢ = b(;1) /2 3 (b2 +
b;./2+1) when j iseven (5 =1,...,4m; — 3).

Then, let us concentrate on the hyperrectangu-
lar cell z € [cijlﬁ,cijlﬂ] SRR (/PR e/ PR
partitioned into 2"n! simplexes in which f is
quadratic. It can be proved that f is quadratic
also on larger subsets, namely on all the sides of
the coarser grid which is the cartesian product
of {bgj, —1,b2jy, baj 41} X - - X {b2j, -1, b2, , b2j, 41}
Hence, once that 3 samples out of the 5 laying on
any of the previous segments, are known, also the
other 2 are known.

when j is odd and cé- =

Figure 2 shows these segments for n = 2 and
n = 3 highlighting that some samples in the cell do
not lay on any of them. In any case, a simple com-
putation indicates that, for a n-dimensional cell,
3" +2n3"~! sampling points belong to at least one
of these segments.

We may now assume that the samples corre-
sponding to the coarser grid are stored (for a total
of [T/, (2m; — 1) samples). It can be easily seen
that n+1 out of the n(n+3)/2+ 1 samples in each
simplex are located at points of this grid and that
n further samples can be interpolated in constant
time knowing other n values on the same grid. The
remaining n(n — 1)/2 samples are then retrieved
from memory to allow final intrpolation.

With this scheme, the number of samples to be
store is [[;_; (4m;—3) =327 (2m; —2) [1; ,;(2mi—
1) while the time needed for an inference is in-
creased by the need of n further fetches from mem-
ory and subsequent quadratic interpolation. To as-
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Figure 3: Segments used for inteprolation of miss-
ing samples starting from smaples on the coarse
grid in a case with n =3

certain what the impact of this interpolation is on
the time complexity of the inference procedure we
may concentrate on any of the segments in Figure
2 and identify the points in which the samples are
known with their distance from the end of the seg-
ment which belongs to the simplex under consider-
ation, i.e. 0, 1/2 and 1. The point at which we need
the sample value correspond to a coordinate value
of 1/4. Figure 3 shows the usual n = 3 case and the
segments entailed in the inference depending on a
point z belonging to a particular simples. The ad-
ditional samples on the coarse grid to be fetched
are highlighted along with the segments to which
they and the missing samples belong.

We may now restrict f to one of these segments
and note that, as f is quadratic then

0 0 1 f0)
1/4 1/2 1 f(1/2)
det { { | f({) =0

1/16 1/4 1 f(1/4)

from which we easily obtain f(1/4) =
(1/8)[3f(0) +6f(1/2) — f(1)]. As such an
expression contains only multiplications and a
division by 8 is can be straigthforwardly imple-
mented in most common DSPs with an overhead
of 2 multiplications, 2 sums and 1 shift.

4 Simulation Results

The proposed procedure has been manually
coded into the native assembly language of the
TMS320C6201 exploiting only one of the two avail-
able data paths so to leave the other for applications
running in parallel with fuzzy inference. Loops have
been unrolled by a preprocessing stage which over-
laps segments of code designed to schedule the dif-
ferent tasks on the 4 available units and optimizing
their exploitation.

n cycles cycles saved

(full storage) | (reduced storage) | storage
1 61 70 8
2 83 101 112
3 122 149 1176
4 156 192 | 10976
5 207 252 | 96040
6 253 307 | 806736

Table 1: Simulated performance of the proposed
inference

Table 1 reports the number of clock cycles needed
to perform a single inference with n from 1 to 6
with and without the addition of the sample inter-
polation procedure. Both results are obtained sim-
ulating the running code on the trial version of the
development tools for the the TMS320C6201. The
number of samples whose memorization is unneces-
sary is also reported assuming m; = mg = m, = 5.

Note how on a 200MHz device an inference de-
pending on 6 inputs can be computed in about
1.5us. As a comparison, note that for any input
point there are 64 firing rules whose first-order poly-
nomial consequence entails at least 6 multiplica-
tions and additions. Thus a straightforward com-
putation would entail not less than 768 cycles, i.e
more than 3.8us even with this gross underestima-
tion.
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