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Abstract: -Multiports which possess characteristics play a key role in electrical circuit theory. Resistors,
capacitors, inductors and memristors as well as an infinite variety of higher order basic circuit elements
belong to the class of algebraic multiports. In this paper the general coordinate free definition of an n-port
having the characteristic is introduced and investigated in details. A concept of generalized algebraic
multiport is also introduced. A deep relationship between the existence of time-varying characteristics
of n-ports and the Axiom of Choice is emphasized..
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1 Preliminaries

Consider a collection of abstract objects each with
two access points, called terminals. At this
stage the objects are not restricted; for exam-
ple they may be electrical, mechanical, thermo-
dynamical, depending on what physical attributes
we associate with them. In order to obtain a
mathematical model, with each pair of termi-
nals we associate two types of oriented scalar
variables: “through” variables and “across” vari-
Such pairs of variables are called comju-
gate variables since their scalar product always
Typical conjugate
variables are current and voltage (in case of elec-
trical abstract objects), force and velocity (in
case of mechanical objects), temperature and en-
tropy change (in case of thermodynamical objects)
etc. It is generally impossible to specify in ad-
vance the actual orientations of these variables.
We therefore set up the so-called frame of refer-
ence in terms of which the actual orientation of
“through” and “across” variables, can be specified.

ables.

has the dimension of power.

A form of interdependencies between two-
terminal objects, called coupling, can occur. A col-
lection of two-terminal objects is said to be closed
with respect to couplings if there is no object ex-
ternal to the collection influencing objects in it
through couplings. A closed collection is mini-
mal if no proper subcollection has the same clo-
sure property. Roughly speaking, an multiport is
a minimal collection of two-terminal object, closed
by means of couplings. A two-terminal object that
belong to a multiport is commonly referred to as a
port. Suppose that each port of a network has an
associated pair of well defined oriented scalars: a
current passing through the port from one termi-
nal to another and a woltage between the pair of
ordered terminals. Then, the multiport is called
an electrical multiport. From this point on, with-
out loss of generality, we shall restrict our consid-
eration to electrical multiports.

A map whose domain is time is called a sig-
nal. Normally, the time domain is simply the set
of real numbers which will denote by R. A signal
whose co-domain is also the set of real numbers we
call a real signal. Formally, an electrical n-port is



characterized by a set B of all possible 2n-tuples
of real signals (u1(t),41(¢); ... ;un(t),in(t)) that
are simultaneously allowed on the ports, provid-
ing that ug(¢) is the voltage signal and i () is the
current signal associated with an oriented port k,
for k =1,...n (see e.g. [1] and [5]). We assume
that all these signals belong to the same univer-
sal set of real signals which we shall denote by S.
The set S will be denoted by U when its mem-
bers have the dimension of voltage and by [ if its
members have the dimension of current. Clearly,
B C (U x I)™ = 5?" and therefore B defines a re-
lation in the signal set S which constitutes a mul-
tiport. This explains why the set B of all allowed
2n-tuples of an n-port is called a constitutive rela-
tion. Sometimes BB can be identified with the set
of solutions of a system of equations. If this is the
case such system of equations itself is called the
system of constitutive relations.

Consider the structure (S, + | -) where + is in-
ternal binary operation (sum operation) induced
point by point from the corresponding binary op-
erations in the field of real numbers (R,+,-) and
- is external binary operation (multiplication with
real numbers), also induced point by point from
the corresponding binary operations in the field of
real numbers (R, +, ). It is easy to show that this
structure is a linear (vector) space. It is also clear
that the structure (52", 4 | -) where 4 is a internal
sum binary operation in S?"* induced from S in a
natural way component by component and - is an
external binary operation (multiplication with real
numbers), also defined component by components,
is a linear (vector) space.

Let B C (U x I)™ = S? be the constitutive
relation of an n-port. If (B,+ | -) is a linear
(vector) subspace of S?" (clearly, there are sub-
sets of S?" which are not linear), than the n-
port characterized by B is a linear n-port. De-
note B, = B\ {(u1o(t),i15(t); .. ;uno(t),ino(t)}.
Suppose that for every 2n-tuple (u1,(t),i1,(%);

- 3Uno(t),ino(t)) in B, the associated structure
(B,,+,0) is a linear space of S?". Then B is an
affine subspace of S?" and the n-port character-
ized by B is an affine n-port. Notice that for each
affine n-port there is unique associated linear -
port. An n-port which is neither linear or affine is
nonlinear. We say that an n-port is time-invariant
if for each real number 1" and for each 2n-tuple

(u1(t),31(t); . .. ;un(t),in(t)) from B, the 2n-tuple
(wi(t=T),i1(t=T); ... ;up(t =T),in(t—T)) also
belongs to B.

2 The concept of characteristic
of an abstract subset of S5%"

Each 2n-tuple of signals (§1(¢), 51(%);
:8n(t), 3,(1)) € S?" can be viewed as a maps from
R to R?". Therefore, any subset B of S?" can be
treated as a collection of maps from R to R?". For
some ?, €R denote by B, the set obtained from B
by restricting the domain of maps from R to {t}.
In other words, B, is the set of all 2n-tuples of
numbers (81(4,),81(t0); ... ;80 (L), 8n(t,)) where
(51(¢),81(t); ... ;8n(t),3,(t)) € B and represents
a subset of R?™. We shall call it the chart of B at
the moment ¢, €R. The collection A(B) = {B; |
By CR?, ¢ €R} of all charts of B we shall call
the atlas of B. Notice that with every set B there
is a uniquely associated an atlas. We say that
a map from R to R?" is in accordance with the
atlas of B if for every ¢ €R the image of ¢ belongs
to By CR?". Denote by A be the set of all maps
from R to R?" that are in accordance with the
atlas of B. If A exists then clearly B C A C S?",

Notice that A exists iff there exists a choice
function on A(B) which simultaneously chooses an
element from each member of A(B), that is, which
selects a 2n-tuple of real numbers from each chart
By of the atlas A(B). An easy inductive argument
shows that such a function exists if atlas A(B) is
finite. Otherwise, if A(B) is infinite, the existence
of choice function and hence the existence of the
set A cannot be guaranteed unless we postulate
that The Axiom of Choice holds (see for exam-
ple [7]). This Axiom and number of its equivalent
formulations have far-reaching consequences in all
fields of mathematics.

The most important family of subsets of S?"
which members have finite atlases, is the family of
time-invariant subsets.

Theorem 1: Let B be a subset of S?" and let
A(B) be its atlas. If B is time-invariant then atlas
A(B) contains exactly one chart.

Proof: Consider two charts By and B cor-
responding to two time instances ¢’ and ¢’. Let

(04, By; ... ;b,,b,) be an arbitrary member of



By, Then there exists a 2n-tuple of real sig-
nals (81(¢),31(%); ... ;8n(t), 8n(t)) in B such that
b, = 3(t') and B}, = & (t') for k = 1,...,n. Since
B is time-invariant it follows that (8;(¢ +¢ —t),
S — ) S+ — ), S+t — 1)
also belongs to B. For ¢ = t" this 2n-tuple of real
signals produces a 2n-tuple of real numbers (b, &/;

s, b)) which is clearly a member of By But
Se(t 1 —1") = 3,(¢') and 3¢+ —1") = 5 (1))
an hence BA/k = B% and B}v = B% Consequently,
(0}, b5 ... 50, b)) €Byr and hence By CByr. Us-
ing dual arguments we can prove that By CBy.
Accordingly By =By for any pair of time in-
stances t' and t”. W

Let us now consider a general time-variant case
of a subset B of S?" and suppose that the associ-
ated set A exists. The existence of A can either
be proved or forced by postulating The Axiom of
Choice. Clearly any member of B is a maps from
R to R?". Since A is defined to be the set of all
maps from R to R?" in accordance with the atlas of
B and since S?" contains all maps from R to R?"

it follows immediately that the following relations
hold:

BCACS™ (1)

Relating to the question whether the equality in
the relation B C A occurs or not all subsets of S2"
can be divided into two classes: those for which
this equality does occur, and the remainder (in
which it does not). This motivates the following
definition of characteristics of a subset B of S?".

Definition 1: Let B be a subset of S?" and let
A.be the set of all maps from R to R?™ that are
in accordance with the atlas A(B). If B = A then
atlas A(B) is called the characteristic of B.

If subset B of S?" is time-variant then gener-
ally speaking the corresponding atlas A(B) con-
sists of infinite number of charts and consequently
the concept of characteristic could be ill-defined,
unless the Axiom of Choice is postulated. This
explains why this Axiom is so important in theory
of time-variant subsets of S?".

Notice that the concept of characteristic is nor-
mally addressed to the subsets B of $?® which are
time-invariant. Why is that? Simply because in
this case the substitution of B with its character-
istic provides the most efficient compression of in-
formation since all charts coincide (atlas consists

of only one chart). On the other words, for time-
invariant subset B of S?" always there is BCR?"
such that for all ¢ €R, By =B. Consequently, any
subset B which is time-invariant is uniquely deter-
mined and completely characterized by the associ-
ated set BCR?" [8]. For time-variant subsets B of
52" which possess characteristics the compression
obtained by substitution of 5 with its characteris-
tic is not so evident.

3 Algebraic multiports

Let B C S?" be the set of all 2n-tuples of volt-
age and current signals (i1(t), ... ,in(t),u1(t), ...
,un(t)) that are allowed by an n-port, that is, let
B C S?" be the constitutive relation of an n-port.
If subset B possesses the characteristic then we
shall call it a (v, )-characteristic. Accordingly, all
multiports can be divided in two classes: those
which does possess (v, 7)-characteristics, called re-
sistive n-ports, and the remainder (in which it
does not). In case when n-port is time-invariant
then all its charts coincide, that is, atlas consists
of only one chart BCR?". Consequently, any re-
sistive n-port which is time-invariant is uniquely
determined by a set BCR?™ of 2n-tuples of values
of voltages and currents. Usually we deal with re-
sistive n-ports which atlases can be interpreted as
the set of solutions of a system of algebraic time-
varying equations in terms of port voltages and
currents. These equations are also called constitu-
tive relations of the resistive n-port.

Denote by ¢ and ¢ electric flux (or simply
charge) and is magnetic flux (or simply fluz), re-
spectively. These two variables are related to an-
other two variables ¢ (current) and v (voltage) re-
spectively through the following two equations:

¢Vt = i) (2)
o) = (), (3)

where ¢ (¢) and ¢ (¢) denote first derivatives of
q and ¢ respectively. These two equations can be
treated as degenerate versions of Maxwell equa-
tions. We presume here that signals ¢(¢) and ¢(¢)
are differentiable at least in the sense of general-
ized functions. We shall adopt the following nota-



tion from [5]:

D = iCD(0)+ / i(7)dr (4)

LD -

W D(0)+ / oF)dr. ()

where iC-D(0) and u(~D(0) are two arbitrary con-
stants. Then, the equations (2) and (3) can be
written in the following equivalent form: ¢(t) =
i1 and ¢(t) = uY, respectively. We shall also
adopt the following recurrent notation from [5]:

P = P+ / (P (dr (6)

WD) = WD ()4 / WD (B dr (7)

where p and g are positive integers.

Let B C S?" be the set of all 2n-tuples of volt-
age and current signals (i1(t), ... ,in(t),ui(t), ...
,un(t)) that are allowed by an n-port and suppose
that there exist a set F C S?" of 2n-tuples of sig-
nals (aq(t), ... ,an(t),b1(¢), ... ,bp(t)) such that
for each k = 1, ... ,n, ax(t) is either current or
charge and by (%) is either voltage or flux provided
that the set of all 2n-tuples of signals A obtained
from F by differentiating charge and flux signals
and leaving current and voltage signals, coincides
with B. Suppose now that F has the character-
istic. Since this characteristic is simply the atlas
of F we may construct the set F as the set of all
maps from R to R?" in accordance with this at-
las. Furthermore, from F we can derive the set
A which coincides with B and hence the charac-
teristic of F uniquely determine the constitutive
relation of the considered n-port. Such multiport
is called an algebraic multiport[2, 3]. Special alge-
braic multiports are resistors (if for all k = 1, ..., n,
the signals ag(t) are currents and by(¢) are volt-
ages), capacitors (for all k = 1,...,n, the signals
ag(t) are charges and bg(t) are voltages), induc-
tors (for all k = 1,...,n, the signals ax(t) are cur-
rents and by (¢) are fluxes) and memristors (for all
k=1,...,n, the signals ay(t) are charges and by ()
are fluxes).

4 Higher order and generalized
algebraic multiports

Let B C S?" be the set of all 2n-tuples of volt-
age and current signals (i1(t), ... ,in(t),u1(t),
,un(t)) that are allowed by an n-port. Sup-
pose there exists a 2n-tuple of nonnegative inte-
gers (p1, - ,Pnsq1, - 5Qn) and a set F C S
of 2n-tuples of signals (j1(t), ... ,jn(t),v1(¢), ...
,vn(t)) with appropriate dimensions such that for
k =1, ... ,n, the signals j,gpk)(t), and v,qu)(t)
belong to S and the set of all 2n-tuples of sig-
nals (59 (8), ..., 17 @), v\ 1), ..., v (£)) coin-
cides with B. Then, if such set F exists it com-
pletely characterize B and can be used as an al-
ternative description. We shall call it the (p1, ...
yDPnyq1, - »qn)-description of the n-port. In this
context the description of the n-port via voltage
and current signals coincides with (0, ... ,0,0, ...
, 0)-description. It is easy to construct simple ex-
ample of an n-port which has no characteristic in
0, ... ,0,0, ... ,0)-description but has it in (p1,
. yPny Q1 -, gn)-description. Therefore if B does
not have characteristic it is natural to ask whether
F does. Suppose that F possesses the characteris-
tic, to which we shall also address as (p1, ... ,Pn, ¢1,
, gn )-characteristic of the n-port. Since this
characteristic is simply the atlas of F we may con-
struct the set F as the set of all maps from R to
R?" in accordance with this atlas. Furthermore,
from F we can derive B and hence we conclude
that (p1, ... ,Pn,q1, ... , gn)-characteristic of an n-
port uniquely determines its constitutive relation
B. In particular the multiports with (0, ... , 0,0,
., 0)-characteristic are called resistors, the mul-
tiports having (—1, ... ,—1,0, ... ,0)-characteristic
are called capacitors, those having (0, ... ,0,—1, ...
, —1)-characteristic are called inductors and multi-
ports with (-1, ... ,—1,—1, ... , —1)-characteristic
are called memristors. Beside resistors, capacitors,
inductors and memristors a variety of multiports
with (p1, ... ,Pn,q1, ... ,qn)-characteristic, where
for each k € {1, ... ,n}, p2 +q¢2 € {0,1,2} be-
long to algebraic multiports with mized order. All
other multiports with (p1, ... ,pn,q1, . ,qn)-
characteristic, where at least for one k& € {1, ...
n}t, p% + q,% > 2 are higher order algebraic multi-
ports [5, 6].



Let B C S?" be the set of all 2n-tuples of volt-
age and current signals (i1(t), ... ,in(t),u1(t),
,un(t)) that are allowed by an n-port. Sup-
pose there exists a 2n-tuple of operators (Py, ...
,Pn,Q1, .. ,Qy) and a set F C S?" of 2n-tuples
of signals (j1(t), ... ,jn(t),v1(t), ... ,vn(t)) with
appropriate dimensions such that for all & = 1,
. ,n, the signals P j(¢) and Qg (%) belong to S
and the set of all 2n-tuples of signals (Pj1(%), ...
y Prgn(t), Q1v1(t), ... ,@Qnun(t)) coincides with B.
Then, if such set F exists it completely character-
ize B and may be used as an alternative descrip-
tion. We shall call it the (P, ..., P, Q1, ..., @Qn)-
description of B. Suppose now that F has char-
acteristic. Since this characteristic is simply the
atlas of F we can built the set F as the set of all
maps from R to R?" in accordance with this at-
las. Furthermore we can derive the set B, from F
and hence we conclude that the characteristic of
F uniquely determine the constitutive relation B
of the considered n-port. Therefore we shall call
it the (Pi,..., Pn, @1, ..., @n)-characteristic of B.
Those n-ports with possess (P, ..., Pn, @1, ..y Qn)-
characteristics we call generalized algebraic n-ports
[8]. Notice that higher order algebraic multi-
ports are special cases of generalized algebraic
multiports obtained by interpreting the opera-
tors P, and )y as high order differential opera-
tors, that is, by assuming Pyji(t) = j,gpk)(t) and
Qrug(t) = v,qu)(t) forall k=1, ... ,n.

5 Conclusion

It was recognized by many authors (L. O. Chua
[2, 4, 5, 6], Y-F. Lam [2, 3] and E. W. Szeto [6])
that multiports which possess characteristics play
a major role in electrical circuit theory. The con-
cept of characteristic was implicitly introduced in
the context of algebraic multiports. Resistors, ca-
pacitors, inductors and memristors as well as an
infinite variety of higher order basic circuit ele-
ments belong to this class. In this paper we for-
malize the definition of characteristic and raise
to a general abstract level which is essentially
coordinate-free. A deep relationship between the
existence of time-varying characteristics and the
Axiom of Choice is also pointed out. In particular
a new notion of generalized algebraic multiport as

a broad generalization of the notion of algebraic
multiport, is introduced.
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