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Abstract Computer-aided synthesis of digital circuits from behavioral level specifications offers an effective
way to deal with the increagng complexity of digital hardware design. A high level synthesis tod transforms
an abgract algorithmic description into a detailed register transfer level implementation. Even though
considerable research has taken place, regarding high-level synthesis, practical implementations are just
emerging. This reppens die to the fact that designers demand interaction at both the specification and
implementation level. This paper explores an original idea, & well as he corresponding implementaion, for
the design of agrammar bagd interactive design environment, which allows desigrers suppement high-level
synthesis optimizations with their implementaion preferences. The suggsted methodolog raises the
feagbility for high level design space exploration by enabling synthesis results o be directly modifiable by the

user.
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1. Introduction

Attribut e grammargAGs) were devised by Knuth
[8], as an extension of context-free grammars. The
original motivation has keen to facilitate the
conpiler spedfication and devéopment procedure.
Gereraly an AG can be se@ as amapping from a
language desaibed by a ntext free grammar
(CFG) into a usr defined domain. Since the
begiming, attribute grammars have bea a sulject
for continuous research, both from a enceptual and
a practical point of view. Numerous of automated
AG basd systems, that generate different kinds of
language processors from thdar high level
specifications, have been produced. The abiity to
develop sud systems is ore of the main advantage
of AGs over other formal specification methods.
High-level syrheds (HLS) [5], [9], [10], [16],
systems have been proved to be very effective in
supporting the design of Vey Large Sale
Integration (VLSI) digital circuits. HLS accepts a
behavioral specification of a digital system, along
with a sat of constraints a the resulting hardware,
and finds a ¢$ructure that implements the given
behavior while satisfying the given constraints. The
behavior is uswlly desaibed as an algorithm,
similar to a pogramming language description. The

outpu structure is a register transfer leve
implementation which includes a datapath and a
control unit. Control activates comporents of the
data-path to redlize the required behavior. The
objective of synthesis is o find a structure that
meds the constraints while optimizing some cost
function like the required hardware resources or the
power consumed. The main advantagesof HLS is
that the produced design is more portable, moreover
it is very easy to incorporate changes in the
specification level. The spedfi cation is independent
of the target technolayy ard consequently the design
lifeis likely to increase.

Although HLS has become a hot research topic, the
designers  dtill  prefer  semiautomated  (with
autamatic optimizations strting at lower abdraction
levels) or even manual methodobgies. This happens
because a fuly automated design offers little
interaction, so it is hard to verify that al constraints
are satisfied. Generally, graphical user interfaces are
being usal, in order to make HLS environments
more productive. A robust language based HLS
interactive methodolog, caled the attributed-
behavior specification, has been presented in [1].
Foll owing this approach, the input to HLS is not jist
a behavioral description but a st of properties



(attributes) that must hold in any implementation. attributed-behavior approach at the algorithmic
These attributes refer to the textual algorithmic level, is the flexibility that stems from the use of a
description. The aim of that work was to introduce single interactive synthesis tool and modeling
three relationships (path, cost, delay) between thdanguage. As far as AGs are concerned, they can
attributes. The user has to provide both a textualsupport a formal and flexible implementation
algorithmic and relation description. Synthesis is theframework  for  attributed-behavioral  design
task of defining the values of all attributes that haveoptimizations. In fact, the attributed-behavioral
not been supplied. specification can be synthesized using the same
The same idea was recently adopted by Seaweight techniques found in [2] and [3] with the simple
al [13] to develop Clairvoyant, a system to perform addition of proper attribute initializations. Overall,
hardware compilation using production-based our approach responds to the constraint relationships
specifications provided by the engineer and produces a design that
As an extension to Clairvoyant, Obeeg al [12] best meets these requirements.

have presented PRO-GRAM, a YACC-like

grammar-based synthesis environment for data

communication protocols. 2. Proposed Methodology

Similar to PRO-GRAM was the extension of pegpite the fact that HLS has been a hot research
Clairvoyant presented by Seawrigttt al [14], the  gpic, it has gained little acceptance from industry.
system called Dali. Dali uses a graphical Thjs js partially due to the fact that designers require
hierarchical representation to describe systems that,,ch more interaction with the synthesis process
process structured data streams or handle structurg@lsn what design automation is offering. Since
control protoc_ols. _ ~design complexity prohibits interaction at the lower
AGs were introduced to the field of design |eyels, HLS is forced to support it. A methodology
automation by Jonest al [6], who presented an AG  that can increase HLS interactivity for language

based solution to the incremental evaluation ofpaseq design entry is the attributed-behavior circuit
properties and conditions in VLSI circuits for the specification.

time, and did not study the feasibility of applying set of properties (attributes) that must hold in any

them for practical design systems. implementation of the description. The textual
A tool for silicon compilation, was the syntax- aigorithmic description is a procedural specification
directed system developed by Keutz#r al [7],  \jth syntax similar to conventional programming
which was based on the same ideas with our Cu”enfanguages. For the scheduling problem, we have
work. defined four attributes, four operator relationships in

This paper adds user interaction to the AGENDA [2] the temporal domain, callestep, delay[3], c_step

AG driven _HLS environment a_md extends th_e work andgroup. All the relationships, step, c_step, delay
presented in [3]. It follows the idea of the attributed- ang group, refer to an operator and they are denoted
behavioral system specification (where a system ishemselves like referential operators in the textual

described as a pair of a behavior and a set ohgorithmic description. The hardware interpretati-
attributes that must hold for any implementation) gns of the relationships are:

HLS transformations are performed through yeferential operation will be executed, (syntdrp.

manipulation of some attribute values by the userihe gperation will be delayed. (syntako]).

(with proper initializations), his/her intentions or step: Assigns the control step in which the
design preferences can be directly passed into anyeferential operation will be executed. There is no
implementation. Thus, interaction is introduced. BY frther check for the desired control step. The
iterating over this process, all serial/parallel gesjred control step is selected regardless the status
tradeoffs in behavioral modeling are handled in aguf the operands. For instance if we want operation o

unified, formal environment. _ ~ to be executed in the"ncontrol step we add the
This paper proposes an attributed-behavioraligken [&n] in front of @ in the behavioral
synthesis methodology, using AGs as a formalgescription ([&n]e).

underlying framework over which HLS is Group: In the textual algorithmic description we

performed, following and extending the work cap giscriminate some of the operators in groups.
presented in [4] and [5]. The advantage of using the



We can have more than one groups but eachland the syntax;jg n] denotes that;obelongs to

operator may belong in one group only. Grouping group n. Using AGs, both and n are non-terminal

the operators means that the operations will besymbols that can have different attributes attached,

executed at the same control step The question isccording to the AG driven application that is to be

how shall we decide the control step the operationsconstructed). Scheduling attribute evaluation rules

will be executed. In this case we suggest twocan use these numerical attribute values to

alternatives: i)The user can group the operaamid  implement the modified scheduling heuristic. In

define the control step on which they will be fact, the way scheduling attributes propagate

executed. ii)The user will only group the operators through the parse tree is not changed at all. Only

and let the system decide for the control step theyproper initialization rules are attached to the leaves.

will be executed. For example, consider the following operation

In the first case the user can use step or c_steparsing rule with a step relationship.

attributes to define the control step while in the

second case the selected control step is the latest ongeration -

among the control steps of the operations in theoperand ; operator [numberjoperand ;> (1)

group, assuming that no grouping was performed.

All the relationships are used to encode theConsidering the above modified CSA scheduling

designer’s preferences regarding the implementatiorheuristic’s requirements, it is implied that inputs

of the behavior and thus, have a direct impact on thenust be scheduled before they are needed and that

operation of the current scheduling algorithm each output must be scheduled in the next control

(CSA). step after all its inputs have been scheduled. This

The designer may use the attributes in two ways:  can be accomplished by usingynthesizeattribute

a) as operators in the textual algorithmic s_cs (whose value depends on values of successor

description and b) as operations performed by thenodes in the parse tree) to pass scheduling

user after the schedule is calculated information from inputs to outputs, with the
following evaluation rule, in any syntactic rule

The two cases are totally autonomous. The user casimilar to (1). In the following CSA is the control

apply the four relationships in the textual step estimated by the currently used scheduling

algorithmic description so as to set the constraintsalgorithm .

related to the problem or/and after the schedule is

done to make additional necessary changes to theperation.step=number

schedule. In this part we can see a more powerfulperation.s_cs=valid(operation.step) ?

interaction between the designer and the systemoperation.step :

The designer knows the arisen schedule and he ma§Peration.CSA

make changes to the value of the control step for.

each operation, to set new relationships among th

operators.

he step relationship is involved using the shorthand

? :] conditional operator (used exactly like in the C
The implementation of an attributed-behavior HLS programming language). As it can be seen, It has a
straightforward correspondence with an attribute of

environment can be made using any suitableth AG f | In fact traint relationshi
method. However, there exists a strong correlation € ormalism. In 1act, constraint relationships
can be regarded as the initial values (under

between this interactive specification method and " . .
the formal specification and implementation conditions) of the scheduling attributecs .
framework of the AGENDA AG driven HLS I1he same applies in the case of the delay
environment [2]. relatlo_nshlp. The foII(_meg_ is an operation parsing
The attributed-behavior interactive  synthesis "€ With a delay relationship.

technique has been implemented on top of the ,

AGENDA formal AG based environment. Except operation - N

from the work described in [2] and [3], attributes are P€/@nd 1 operator  ["numberjoperand - (2)

also attached to the step, c_step, delay and grou
relationship grammar symbols, that hold their
corresponding numerical values (Notice the
difference between the attributes of the behavioraloperatl.on delay=number
description and the attributes of the non-terminal operation:s cs=operation.delay+
grammar symbols. The synta{nd, o[&n] or o[*n] " +operation.CSA;
denote that n is a step, c_step or delay attribute of o

%cheduling is performed with the following
evaluation rule.



In the case of the c_step relationship, the parsinginsert_group()is used to relate the estimated control

rule (3) is similar to step and delay parsing rules. step of the current operator with the other members
of the same group. Theoperation.flag

operation - attribute is used to specify weather parsing rule (4)

operand ; operator [&number] operand  2(3) or (5) was used. If operation.flag is set then
number is the value of the group's control step,

It is obvious that inputs are scheduled independentlygtherwise the control step of the group is the latest

from outputs thus the designer has to be sure thaggntrol step of all the members of the group.

inputs will _have the desire(_j values_, in the control get_group_cs(js used to retrieve the final value for
step he defines. No synthesized attributes are needeghe control step of the group.

to pass information from input to output. The

attributes_cs is used to define the control step of Considering the above heuristic's (4), (5)
the related operation and to pass schedulingrequirements, it is obvious that the output is related
information to higher nodes in the parse tree.not only with inputsoperandl andoperand?.
Scheduling information arises from the following |n (4) the control step of all the group members is
evaluation rule. set tonumberl. In (5) as we have mentioned
earlier the control step for each of the group
members arises from the maximum value of the
control steps of the operations, using the current
In the case of group relationship the parsing rule hasscheduling algorithm. To respect this relationship
two similar forms depending on the way it is used. If before we decide the control step of the group we

group relationship is used combined witep or have to know the latest control step of all operations.
c_step relationships then the parsing rule is as To accomplish this we have introduced two more

operation.step=number
operation.s_cs= operation.step

presented in (4). attributes, one synthesized_group and one
inheritedi_group. As we can see in the parse tree of
operation - fig.1 attributes_groupmoves upwards in the parse
operand ; operator  [&numberl][g number2] tree from the grouped nodes towards the root,
operand , 4) carrying information about the control step the
operation.step=numberl operation would be executed using CSA. When

operation.s_group_cs=operation.step
operation.group=number2
insert_group(operation.s_group_cs,

s_groupreaches the root, group inherits it's value
and carries it downward towards the rest nodes of

operation.group,operation.flag); the same group. Whengroup reaches these nodes
operat/'on,s_cs:ge[_group_cs(operat/'on_ it means that aIIS_group attributes have been
group,operation.i_group_cs); calculated and then the control step can be
calculated.

If group relationship is used naturally (not related

with other relations) then the parsing rule is as

presented in (5). 7N

operation -

operand ; operator [g number]operand 2(5) \ '\

operation.step=operation. CSA N Qo Qo

operation.s_group_cs=operation.step \\ ®) \‘ S \ e h

operation.group=number SOSHLAIOIDIOATOSOED

lnSE‘ft_gl’OUP(OPE‘fafIOFI-S_QfOUP_CS, OO0 ™0 000 0000 0000 000004 NOO
operation.group,operation.flag); .’. ‘ ". .’. .'. ... had .’. .°. .’.

operation.s_cs=get_group_cs(operation. ONO

group,operation.i_group_cs); ceoo T e

The basic difference between (4) and (5), is the wayrig1. s group and i_group transfer information
the decision of the control step is made. Ing@uUP  \jthin a parse tree
is combined withc_steprelationship, so the control

step is decided by the user, while in (5) the control o) the attributes can be used more than one time

step is estimated by the current SChedU”ngindependently or combined (ex [&2][g 1]) in the

algorithm. In both (4) and (5) we can see two parse tree of the behavioral description. A symbol
functionsinsert_group() and get_group_cs()



used as input in one application is used as output irg_ Experimental Results

the next and so scheduling attributes are passed in fpe technique presented so far has been
bottom up fashion throughout the whole tree. In thisimplemented on top of the SDP [15] attribute
way, the whole behavioral description is scheduled. gyajuator generator tool. The implementation
The step, c_step, delay and group attributes are nQ¢ongjsts of an AG, following the syntax of SDP.
depending on the scheduling algorithm. They can beConsidering that the scheduling AG has already
used in any scheduling algorithm to meet constraintSpeen constructed from our previous work, the
set by the hardware. To use the attributes we suggegplementation of the attributed-behavioral
in any scheduling algorithm we have to reform the gpecification was straightforward. This is verified by
algorithm as presented in fig.2. In the following with {he fact that for 862 lines of AG code required for
CSA(n) we mean the control step that is calculatedihe jmplementation of AGENDA (basic scheduling
by the current scheduling algorithm. and housekeeping), 1378 were used to implement

_ _ _ _ the ideas of this paper.
Using an attributed-behavior HLS environment,

designers can increase their interaction with the[ program inverse_A:

synthesis process. They can iterate through different Begin

implementations of the desired functionality | D:=al*b2*c3+bl*c2*a3+cl*a2*h3-a3*b2*cl-
changing the supplied step, c_step, delay and group 03"c2"al-c3*a2*bl;

attributes until a desired implementation is | i psg)

generated. Begin

Ap=by*Cs-bs*co; Azi= byci-by*cs; Asi=br*ca-by*cy;
The advantage of this technique is the declarative Bi= &'Ci-&'Cs By=a"Ca-a"Cy; By= &"Cr-an”Cs;
and modular notation (as presented above) for the “*=% ?Sfa;t_’i’BCfb',:‘;,b:l'ca}Db_3’ Car=ar'bzab;
specification and implementation of each scheduling| b, =A/D: by =ByD: by =CyD:

heuristic. With the adoption of the attributed- | c;1:=A4/D; cx1:=B4/D; c31:=C4/D;

behavioral technique, user interaction is | End

considerably increased. Using step, c_step, delay End.

and group attributes in a scheduling algorithm
increases its flexibility. For example, in the case of a :
resource constrained problem, certain scheduling>cheduling.

heuristics may be trapped to local minimal solutions . . :
As a design example of the resulting environment

and fail to give the desired solution. In such cases, ¢ K for f )
the designer may be able to aid the synthesis toolV® Present part of our work for fast transitory
ffects in electric power systems, the estimation of

using step, c_step, delay and group to bind resource _ P L
with specific operations. An example of resource (N INverse matrix A of A For simplicity we
usage minimization using an attributed-behavioral PreSent the case of a 3x3 matrix.

specification is presented in the following section

Fig.3 Estimation of inverse matrix Ausing ASAP

In Fig.3 we can see the behavioral specification of

for each operation; o the algorithm without the use of the attributes we
if o is scheduled in control step n usmgtep propose. _ _
cstep(e =n In fig.4 we can see the scheduling tree using ASAP
elseif g is scheduled in control step n ussigp local scheduling algorithm. Alternatively we could
if  nisavalid control step use ASAP global scheduling. The difference
cstep(®=n between the two schedules is that the first would
else . -
cstep@®= CSA(n) require 18 multipliers and 9 control steps and the
else if a is scheduled usingelay second would first would require 24 multipliers and
cstep(® = n+CSA(n) 8 control steps. It is obvious that with both
elseif  ois scheduled usingroup scheduling schemes the resulting implementation, is
cstep(p = maximum cstep of all theaf the same group  quite expensive ( 18-24 multipliers, 9 dividers and 9
else * Normal scheduling */ subtracters require lot of resources )
cstep(® = CSA(n) ’

We can rewrite the behavioral description as an
attributed-behavior description using c_step, group
and delay relationships. Since we know the
specifications of the algorithm we can reform it

Fig.2 Reformed scheduling algorithm to include
step, c_step, delay and group attributes
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Fig.4. Normal scheduling tree using ASAP scheduling algorithm

using global scheduling from different basic blocks. At the same time, less computation latency is
Specifically we can divide the calculation of the achieved (2 control steps less). As it can be seen, the
minor determinants in three groups. The first groupexpression has been rescheduled as if a different
will start in the & control step, the second in th& 4 (resource constrained) scheduling heuristic has been
and the last group in thd"Sontrol step. In this way used. Alternatively we could reduce even more the
we managed to reduce the total number ofresources with cost in time. We can reduce the
multipliers in 6. The new behavioral description is dividers from 9 to 5 or 3 increasing the execution
shown in fig.5 and the corresponding schedule intime 1 or 2 control steps respectively.

fig.6.

Program inverse_A,; 4 COﬂClUSiOﬂ

Begin T . . .
D:=al*h2*c3+bl*c2*a3+cl*a2*bh3-a3*h2*cl- An interactive HLS synthesis environment,
b3*c2*al-c3*a2*bl: following the attributed-behavior specification

_ paradigm has been presented in this paper. It takes
gé‘;;\o) advantage of the capabilitiespported by the AG
Ar=b[&3][g 1]c +bs(g 1]cs: Ax= bi[g 1]ci-br[g 1]cs corgprtat:jona_ll mode_l%_ that is, ddec“Iaratlve and
Az:=b*[g 1]c,-b*[g 1]cs; Bri= a*[&4][g 2]c 1-a*[g 2]cs: modular design specifications, and allows users to
Bz:=a*[g 2]cs-as*[g 2]ca; Bs= as*[g 2]ci-ar*g 2]cs; supplement scheduling heuristics with their
C1§=az:[&5][9 3]23-83*[9_3]b2: Coi= &*[g 3]b1-ag*[g 3]bs; implementation preferences. Moreover, using the
Co=arlg 3lb-a*[g 3Jor; step, c_step, delay and group attributes it allows the
all.—AllD, 8Q1.—BllD, 831.—C1/D, d . t . t f th th h d | I th

by =Ay/D: byy:=By/D: bay=Cy/D: designer to interfere wi e scheduling algorithm
C11:=Ad/D; Cp1:=By/D; C31:=Cy/D: in two ways, using the attributes within the
End algorithm or after the scheduling algorithm is
End. performed. Step c_step, delay and group can support

) o ) o ) both  minor and major modifications to the
Fig.5 Estimation of inverse matrix A using  gcheduling algorithm. Specifically, the more skilled
attributed behavior ASAP scheduling algorithm. the designer is the more powerful the scheduling

) o ~_ algorithm becomes.
Comparing the schedules in figs 4 and 6, it isThis jdea can be very helpful in design space
obvious that careful use of the step, delay and grouRsypjoration and with the implementation flexibility

relationships  has reduced the resources (6yffered by AGs, can support a new paradigm for
multipliers instead of 18 or 24 and 3 subtractors efficient system level design.

instead of 9) needed to calculate®. A
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