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Abstract: Computer-aided synthesis of digital circuits from behavioral level specifications offers an effective
way to deal with the increasing complexity of digital hardware design. A high level synthesis tool transforms
an abstract algorithmic description into a detailed register transfer level implementation. Even though
considerable research has taken place, regarding high-level synthesis, practical implementations are just
emerging. This happens due to the fact that designers demand interaction at both the specification and
implementation level. This paper explores an original idea, as well  as the corresponding implementation, for
the design of a grammar based interactive design environment, which allows designers supplement high-level
synthesis optimizations with their implementation preferences. The suggested methodology raises the
feasibility for high level design space exploration by enabling synthesis results to be directly modifiable by the
user.                                                                     IMACS/IEEE  CSCC'99  Proceedings, Pages:6381-6387
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1. Introduction
Attribut e grammars (AGs) were devised by Knuth
[8], as an extension of context-free grammars. The
original motivation has been to facil itate the
compiler specification and development procedure.
Generally an AG can be seen as a mapping from a
language described by a context free grammar
(CFG) into a user defined domain. Since the
beginning, attribute grammars have been a subject
for continuous research, both from a conceptual and
a practical point of view. Numerous of automated
AG based systems, that generate different kinds of
language processors from their high level
specifications, have been produced. The abili ty to
develop such systems is one of the main advantage
of AGs  over other formal specification methods.
High-level synthesis (HLS) [5], [9], [10], [16],
systems have been proved to be very effective in
supporting the design of Very Large Scale
Integration (VLSI) digital circuits. HLS accepts a
behavioral specification of a digital system, along
with a set of constraints on the resulting hardware,
and finds a structure that implements the given
behavior while satisfying the given constraints. The
behavior is usually described as an algorithm,
similar to a programming language description. The

output structure is a register transfer level
implementation which includes a data-path and a
control unit. Control activates components of the
data-path to realize the required behavior. The
objective of synthesis is to find a structure that
meets the constraints while optimizing some cost
function li ke the required hardware resources or the
power consumed. The main advantages of  HLS is
that the produced design is more portable, moreover
it is very easy to incorporate changes in the
specification level. The specifi cation is independent
of the target technology and consequently the design
life is likely to increase.
Although HLS has become a hot research topic, the
designers still prefer semi-automated (with
automatic optimizations starting at lower abstraction
levels) or even manual methodologies. This happens
because a fully automated design offers little
interaction, so it is hard to verify that all constraints
are satisfied. Generally, graphical user interfaces are
being used, in order to make HLS environments
more productive. A robust language based HLS
interactive methodology, called the attributed-
behavior specification, has been presented in [1].
Following this approach, the input to HLS is not just
a behavioral description but a set of properties



(attributes) that must hold in any implementation.
These attributes refer to the textual algorithmic
description. The aim of that work was to introduce
three relationships (path, cost, delay) between the
attributes. The user has to provide both a textual
algorithmic and relation description. Synthesis is the
task of defining the values of all attributes that have
not been supplied.
The same idea was recently adopted by Seawright et
al [13] to develop Clairvoyant, a system to perform
hardware compilation using production-based
specifications
As an extension to Clairvoyant, Oberg et al [12]
have presented PRO-GRAM, a YACC-like
grammar-based synthesis environment for data
communication protocols.
Similar to PRO-GRAM was the extension of
Clairvoyant presented by Seawright et al [14], the
system called Dali. Dali uses a graphical
hierarchical representation to describe systems that
process structured data streams or handle structured
control protocols.
AGs were introduced to the field of design
automation by Jones et al [6], who presented an AG
based solution to the incremental evaluation of
properties and conditions in VLSI circuits for the
development of interactive design editors. This work
involved circular AGs with increased evaluation
time, and did not study the feasibility of applying
them for practical design systems.
A tool for silicon compilation, was the syntax-
directed system developed by Keutzer et al [7],
which was based on the same ideas with our current
work.
This paper adds user interaction to the AGENDA [2]
AG driven HLS environment and extends the work
presented in [3]. It follows the idea of the attributed-
behavioral system specification (where a system is
described as a pair of a behavior and a set of
attributes that must hold for any implementation)
and the fact that in the AGENDA environment, all
HLS transformations are performed through
attribute evaluation rules. Allowing the direct
manipulation of some attribute values by the user
(with proper initializations), his/her intentions or
design preferences can be directly passed into any
implementation. Thus, interaction is introduced. By
iterating over this process, all serial/parallel
tradeoffs in behavioral modeling are handled in a
unified, formal environment.
This paper proposes an attributed-behavioral
synthesis methodology, using AGs as a formal
underlying framework over which HLS is
performed, following and extending the work
presented in [4] and [5]. The advantage of using the

attributed-behavior approach at the algorithmic
level, is the flexibility that stems from the use of a
single interactive synthesis tool and modeling
language. As far as AGs are concerned, they can
support a formal and flexible implementation
framework for attributed-behavioral design
optimizations. In fact, the attributed-behavioral
specification can be synthesized using the same
techniques found in [2] and [3] with the simple
addition of proper attribute initializations. Overall,
our approach responds to the constraint relationships
provided by the engineer and produces a design that
best meets these requirements.

2. Proposed Methodology
Despite the fact that HLS has been a hot research
topic, it has gained little acceptance from industry.
This is partially due to the fact that designers require
much more interaction with the synthesis process
than what design automation is offering. Since
design complexity prohibits interaction at the lower
levels, HLS is forced to support it. A methodology
that can increase HLS interactivity for language
based design entry is the attributed-behavior circuit
specification.
An attributed-behavior specification consists of a
textual algorithmic description accompanied by a
set of properties (attributes) that must hold in any
implementation of the description. The textual
algorithmic description is a procedural specification
with syntax similar to conventional programming
languages. For the scheduling problem, we have
defined four attributes, four operator relationships in
the temporal domain, called step, delay [3], c_step
and group. All the relationships, step, c_step, delay
and group, refer to an operator and they are denoted
themselves like referential operators in the textual
algorithmic description. The hardware interpretati-
ons of the relationships are:
Step: [3] Assigns the control step in which the
referential operation will be executed,(syntax oi[n]).
Delay:[3]Assigns the number of control steps that
the operation will be delayed. (syntax oi[^n]).
c_step: Assigns the control step in which the
referential operation will be executed. There is no
further check for the desired control step. The
desired control step is selected regardless the status
of the operands. For instance if we want operation oi

to be executed in the nth control step we add the
token [&n] in front of oi in the behavioral
description ([&n]oi).
Group:  In the textual algorithmic description we
can discriminate some of the operators in groups.



We can have more than one groups but each
operator may belong in one group only. Grouping
the operators means that the operations will be
executed at the same control step The question is
how shall we decide the control step the operations
will be executed. In this case we suggest two
alternatives: i)The user can group the operators and
define the control step on which they will be
executed. ii)The user will only group the operators
and let the system decide for the control step they
will be executed.
In the first case the user can use step or c_step
attributes to define the control step while in the
second case the selected control step is the latest one
among the control steps of the operations in the
group, assuming that no grouping was performed.
All the relationships are used to encode the
designer’s preferences regarding the implementation
of the behavior and thus, have a direct impact on the
operation of the current scheduling algorithm
(CSA).
The designer may use the attributes in two ways:
a) as operators in the textual algorithmic
description and b) as operations performed by the
user after the schedule is calculated

The two cases are totally autonomous. The user can
apply the four relationships in the textual
algorithmic description so as to set the constraints
related to the problem or/and after the schedule is
done to make additional necessary changes to the
schedule. In this part we can see a more powerful
interaction between the designer and the system.
The designer knows the arisen schedule and he may
make changes to the value of the control step for
each operation, to set new relationships among the
operators.
The implementation of an attributed-behavior HLS
environment can be made using any suitable
method. However, there exists a strong correlation
between this interactive specification method and
the formal specification and implementation
framework of the AGENDA AG driven HLS
environment [2].
The attributed-behavior interactive synthesis
technique has been implemented on top of the
AGENDA formal AG based environment. Except
from the work described in [2] and [3], attributes are
also attached to the step, c_step, delay and group
relationship grammar symbols, that hold their
corresponding numerical values (Notice the
difference between the attributes of the behavioral
description and the attributes of the non-terminal
grammar symbols. The syntax oi[n], oi[&n] or oi[^n]
denote that n is a step, c_step or delay attribute of oi

and the syntax oi[g n] denotes that oi  belongs to
group n. Using AGs, both oi and n are non-terminal
symbols that can have different attributes attached,
according to the AG driven application that is to be
constructed). Scheduling attribute evaluation rules
can use these numerical attribute values to
implement the modified scheduling heuristic. In
fact, the way scheduling attributes propagate
through the parse tree is not changed at all. Only
proper initialization rules are attached to the leaves.
For example, consider the following operation
parsing rule with a step relationship.

operation →
operand 1 operator  [number]operand 2 (1)

Considering the above modified CSA scheduling
heuristic’s requirements, it is implied that inputs
must be scheduled before they are needed and that
each output must be scheduled in the next control
step after all its inputs have been scheduled. This
can be accomplished by using a synthesized attribute
s_cs  (whose value depends on values of successor
nodes in the parse tree) to pass scheduling
information from inputs to outputs, with the
following evaluation rule, in any syntactic rule
similar to (1). In the following CSA is the control
step estimated by the currently used scheduling
algorithm .

operation.step=number
operation.s_cs=valid(operation.step) ?
operation.step :
operation.CSA

The step relationship is involved using the shorthand
[? :] conditional operator (used exactly like in the C
programming language). As it can be seen, it has a
straightforward correspondence with an attribute of
the AG formalism. In fact, constraint relationships
can be regarded as the initial values (under
conditions) of the scheduling attribute s_cs .
The same applies in the case of the delay
relationship. The following is an operation parsing
rule with a delay relationship.

operation →
 operand 1 operator [^number]operand 2 (2)

Scheduling is performed with the following
evaluation rule.

operation.delay=number
operation.s_cs=operation.delay+

+operation.CSA;



In the case of the c_step relationship, the parsing
rule (3) is similar to step and delay parsing rules.

operation →
operand 1 operator  [&number] operand 2(3)

It is obvious that inputs are scheduled independently
from outputs thus the designer has to be sure that
inputs will have the desired values in the control
step he defines. No synthesized attributes are needed
to pass information from input to output. The
attribute s_cs  is used to define the control step of
the related operation and to pass scheduling
information to higher nodes in the parse tree.
Scheduling information arises from the following
evaluation rule.

operation.step=number
operation.s_cs= operation.step

In the case of group relationship the parsing rule has
two similar forms depending on the way it is used. If
group relationship is used combined with step or
c_step relationships then the parsing rule is as
presented in (4).

operation →
operand 1 operator [&number1][g number2]
operand 2                                          (4)
operation.step=number1
operation.s_group_cs=operation.step
operation.group=number2
insert_group(operation.s_group_cs,
      operation.group,operation.flag);
operation.s_cs=get_group_cs(operation.
          group,operation.i_group_cs);

If group relationship is used naturally (not related
with other relations) then the parsing rule is as
presented in (5).

operation →
operand 1 operator  [g number]operand 2(5)
operation.step=operation.CSA
operation.s_group_cs=operation.step
operation.group=number
insert_group(operation.s_group_cs,
      operation.group,operation.flag);
operation.s_cs=get_group_cs(operation.
          group,operation.i_group_cs);

The basic difference between (4) and (5), is the way
the decision of the control step is made. In (4) group
is combined with c_step relationship, so the control
step is decided by the user, while in (5) the control
step is estimated by the current scheduling
algorithm. In both (4) and (5) we can see two
functions insert_group() and get_group_cs() .

insert_group() is used to relate the estimated control
step of the current operator with the other members
of the same group. The operation.flag
attribute is used to specify weather parsing rule (4)
or (5) was used. If operation.flag is set then
number  is the value of the group's control step,
otherwise the control step of the group is the latest
control step of all the members of the group.
get_group_cs() is used to retrieve the final value for
the control step of the group.

Considering the above heuristic’s (4), (5)
requirements, it is obvious that the output is related
not only with inputs operand1  and operand2.
In (4) the control step of all the group members is
set to number1.  In (5) as we have mentioned
earlier the control step for each of the group
members arises from the maximum value of the
control steps of the operations, using the current
scheduling algorithm. To respect this relationship
before we decide the control step of the group we
have to know the latest control step of all operations.
To accomplish this we have introduced two more
attributes, one synthesized s_group and one
inherited i_group. As we can see in the parse tree of
fig.1 attribute s_group moves upwards in the parse
tree from the grouped nodes towards the root,
carrying information about the control step the
operation would be executed using CSA. When
s_group reaches the root, i_group inherits it's value
and carries  it downward towards the rest nodes of
the same group. When i_group reaches these nodes
it means that all s_group attributes have been
calculated and then the control step can be
calculated.

Fig1. s_group and i_group  transfer information
within a parse tree

 All the attributes can be used more than one time
independently or combined (ex [&2] [g 1]) in the
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used as input in one application is used as output in
the next and so scheduling attributes are passed in a
bottom up fashion throughout the whole tree. In this
way, the whole behavioral description is scheduled.
The step, c_step, delay and group attributes are not
depending on the scheduling algorithm. They can be
used in any scheduling algorithm to meet constraints
set by the hardware. To use the attributes we suggest
in any scheduling algorithm we have to reform the
algorithm as presented in fig.2. In the following with
CSA(n) we mean the control step that is calculated
by the current scheduling algorithm.

Using an attributed-behavior HLS environment,
designers can increase their interaction with the
synthesis process. They can iterate through different
implementations of the desired functionality
changing the supplied step, c_step, delay and group
attributes until a desired implementation is
generated.

The advantage of this technique is the declarative
and modular notation (as presented above) for the
specification and implementation of each scheduling
heuristic. With the adoption of the attributed-
behavioral technique, user interaction is
considerably increased. Using step, c_step, delay
and group attributes in a scheduling algorithm
increases its flexibility. For example, in the case of a
resource constrained problem, certain scheduling
heuristics may be trapped to local minimal solutions
and fail to give the desired solution. In such cases,
the designer may be able to aid the synthesis tool
using step, c_step, delay and group to bind resources
with specific operations. An example of resource
usage minimization using an attributed-behavioral
specification is presented in the following section

for  each operation oi 
 if  oi is scheduled in control step n using c_step
    cstep(oi) = n
 else if  oi is scheduled in control step n using step
   if  n is a valid control step
         cstep(oi) = n                    
   else
         cstep(oi) = CSA(n)
 else if  oi is scheduled using delay 
       cstep(oi) = n+CSA(n)
 else if  oi is scheduled using group
       cstep(oi) = maximum cstep of all the oi of the same group
 else                             /* Normal scheduling */
       cstep(oi) = CSA(n)

Fig.2 Reformed scheduling algorithm to include
step, c_step, delay and group attributes

3. Experimental Results
The technique presented so far has been
implemented on top of the SDP [15] attribute
evaluator generator tool. The implementation
consists of an AG, following the syntax of SDP.
Considering that the scheduling AG has already
been constructed from our previous work, the
implementation of the attributed-behavioral
specification was straightforward. This is verified by
the fact that for 862 lines of AG code required for
the implementation of AGENDA (basic scheduling
and housekeeping), 1378 were used to implement
the ideas of this paper.

Program inverse_A;
Begin
D:=a1*b2*c3+b1*c2*a3+c1*a2*b3-a3*b2*c1-
b3*c2*a1-c3*a2*b1;

if (D>0)
Begin
A1:=b2*c3-b3*c2; A2:= b3*c1-b1*c3; A3:=b1*c2-b2*c1;
B1:= a3*c1-a2*c3; B2:=a1*c3-a3*c1; B3:= a3*c1-a1*c3;
C1:=a2*b3-a3*b2; C2:= a3*b1-a1*b3; C3:=a1*b2-a2*b1;
a11:=A1/D; a21:=B1/D; a31:=C1/D;
b11:=A2/D; b21:=B2/D; b31:=C3/D;
c11:=A3/D; c21:=B3/D; c31:=C3/D;
End
End.

Fig.3 Estimation of inverse matrix A-1 using ASAP
scheduling.

As a design example of the resulting environment
we present part of our work for fast transitory
effects in electric power systems, the estimation of
the inverse matrix A-1 of A. For simplicity we
present the case of a 3x3 matrix.

In Fig.3 we can see the behavioral specification of
the algorithm without the use of the attributes we
propose.
In fig.4 we can see the scheduling tree using ASAP
local scheduling algorithm. Alternatively we could
use ASAP global scheduling. The difference
between the two schedules is that the first would
require 18 multipliers and 9 control steps and the
second would first would require 24 multipliers and
8 control steps. It is obvious that with both
scheduling schemes the resulting implementation, is
quite expensive ( 18-24 multipliers, 9 dividers and 9
subtracters require lot of resources ).

We can rewrite the behavioral description as an
attributed-behavior description using c_step, group
and delay relationships. Since we know the
specifications of the algorithm we can reform it



using global scheduling from different basic blocks.
Specifically we can divide the calculation of the
minor determinants in three groups. The first group
will start in the 3rd control step, the second in the 4th

and the last group in the 5th control step. In this way
we managed to reduce the total number of
multipliers in 6. The new behavioral description is
shown in fig.5 and the corresponding schedule in
fig.6.

Program inverse_A;
Begin
D:=a1*b2*c3+b1*c2*a3+c1*a2*b3-a3*b2*c1-
b3*c2*a1-c3*a2*b1;

if (D>0)
Begin
A1:=b2*[&3][g 1]c 3-b3*[g 1]c2; A2:= b3*[g 1]c1-b1*[g 1]c3;
A3:=b1*[g 1]c2-b2*[g 1]c1; B1:= a3*[&4][g 2]c 1-a2*[g 2]c3;
B2:=a1*[g 2]c3-a3*[g 2]c1; B3:= a3*[g 2]c1-a1*[g 2]c3;
C1:=a2*[&5][g 3]b 3-a3*[g 3]b2; C2:= a3*[g 3]b1-a1*[g 3]b3;
C3:=a1*[g 3]b2-a2*[g 3]b1;
a11:=A1/D; a21:=B1/D; a31:=C1/D;
b11:=A2/D; b21:=B2/D; b31:=C3/D;
c11:=A3/D; c21:=B3/D; c31:=C3/D;
End
End.

Fig.5 Estimation of inverse matrix A-1 using
attributed behavior ASAP scheduling algorithm.

Comparing the schedules in figs 4 and 6, it is
obvious that careful use of the step, delay and group
relationships has reduced the resources (6
multipliers instead of 18 or 24 and 3 subtractors
instead of 9 )  needed  to  calculate   A-1.

At the same time, less computation latency is
achieved (2 control steps less). As it can be seen, the
expression has been rescheduled as if a different
(resource constrained) scheduling heuristic has been
used. Alternatively we could reduce even more the
resources with cost in time. We can reduce the
dividers from 9 to 5 or 3 increasing the execution
time 1 or 2 control steps respectively.

4. Conclusion
An interactive HLS synthesis environment,
following the attributed-behavior specification
paradigm has been presented in this paper. It takes
advantage of the capabilities supported by the AG
computational model, that is, declarative and
modular design specifications, and allows users to
supplement scheduling heuristics with their
implementation preferences. Moreover, using the
step, c_step, delay and group attributes it allows the
designer to interfere with the scheduling algorithm
in two ways, using the attributes within the
algorithm or after the scheduling algorithm is
performed. Step c_step, delay and group can support
both minor and major modifications to the
scheduling algorithm. Specifically, the more skilled
the designer is the more powerful the scheduling
algorithm becomes.
This idea can be very helpful in design space
exploration and with the implementation flexibility
offered by AGs, can support a new paradigm for
efficient system level design.
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