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Abstract

We consider the Schr�odinger equation and the wave equation on the line when the interaction

term is a fractal measure. We relate the long-time localization properties of the wave-packets

to the fractal wavelet dimensions of this latter.
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1 Introduction

An important application of scattering is the recog-

nition and caracterization of fractal objects. This

inverse problem is very complex in general and

with limited results, but turns out to be more

tractable in the simple case of the potential scat-

tering on the line. Suppose we are given some

formal hamiltonian H = �� + V on L2(R),

where the potential term is fractal, in a sense

to be precised, and consider two associated time

evolution, namely the Schr�odinger equation,

i@t	t �H	t = 0; (1.1)

and the wave equation,

@tt	t +H	t = 0: (1.2)

A natural question might be how the large

time behaviour of the wave-packets 	t mirrors

the fractality of the potential, and what kind of

fractal characterization of this latter can be ob-

tained. The wavelet analysis and the wavelet

dimensions will turn out to be an e�cient tool

to tackle this problem.

2 Scattering formalism for mea-

sures potentials

Dealing with truely fractal potentials requires to

resort to classes of singular potentials, namely

those given by singular measures. So let V be a

�nite real Borel measure on R. For sake of sim-

plicity, we will assume V has compact support,

say within [�1; 1], but this condition can be con-

siderably relaxed. The operator sumH = H0+V

does in general not exist, but can be de�ned in

the sense of quadratic forms. The domain D(H)

of the corresponsding operator is then a dense

subset of W 1(R) (Sobolev space of L2 functions

whose distributional derivative is also in L2). It

has been shown in [2] that an explicit scatter-

ing theory can be constructed for such opera-

tors. Basically all the results which are known

for short-range regular potentials also hold for

measures-potentials. In particular, the positive

spectrum is purely absolutely continuous and the

negative spectrum consists in a �nite number of

eigenvalues. The wave operators exist and are

complete. The spectral measure and hence the

time evolution can be computed in the usual way

by means of the scattering wave functions, which

are the solutions of the stationary Schr�odinger

equation satisfying the radiation condition. For

an exhaustive presentation of these results, we

refer to [2]. The solution 	t of the Schr�odinger

equation (1.1) is given by the evolution opera-

tor e�iHt and uniquely determined by the initial

state 	t=0 = f :

	t = e�iHtf; t � 0: (2.1)

Analogously, the solution of the wave equation

(1.2) is also given by an evolution operator, pro-

vided H � 0 (hence V � 0, an hypothesis which

will always be implicitely assumed for the wave

equation), and the initial data 	t=0 = f 2 D(H)

and @t	t=0 = g 2 D(H):

	t = cos(H1=2t)f +H�1=2 sin(H1=2t)g; t � 0;

(2.2)

where the functions ofH are de�ned by the usual

functional calculus. In the following, we will as-

sume that the initial wave-packet 	t=0 is pre-

pared by sending a incident wave train from the

remote left on the scatterer. Thus, for t < 0, the

wave function is simply a (free) solution of the

wave equation propagating to the right, that is

of the form 	t(x) = s(x � t). Therefore, it is

natural to impose the initial conditions

g = @t	t=0 = �@x	t=0 = �f 0: (2.3)

Now let 
� =] �1;�1] and 
+ = [1;+1[ be

the regions to the left and to the right of the
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support of V , respectively, and I

�

the corre-

sponding characteristic functions, I

�
(x) = 1 if

x 2 
�, I

�
(x) = 0 else. Suppose the measure-

ment of the wave packets 	t is accessible outside

the region of interaction, i.e in the regions 
�.

Our goal is to infer from this knowledge some

fractal properties of the potential. A natural

quantity to look at is the amount of q�energy

present in each region:

p�q = lim
t!+1

I

�
	t

q
q
; (2.4)

assuming for the moment that the limits exist.

Note that when f is normalized (i.e kfk = 1) and

q = 2, these quantities can be interpreted as the

�nal probability of �nding a particle described

by the wave function 	t in the left, respectively

right, region. The quantities p�q turn out to be

related in a simple way to the fractal wavelet

dimensions.

3 The wavelet dimensions

The wavelet dimensions, introduced under this

form by M. Holschneider ([4]), are a generaliza-

tion of the usual box dimensions (see [3] for the

original de�nition, [5] for more rigorous versions)

that can be applied to any signed or complex

signals, whereas the latter caracterize essentially

probability measures. Following the standard

notations, we shall write

gb;a(x) = a�1g(a�1(x� b))

for the translated and dilated version of a func-

tion g. The wavelet transform of a function or

more generally a distribution s with respect to a

wavelet g is formally given by

Wgs(b; a) =

Z
dt gb;a(t)s(t); (3.1)

where the minimal requirement for a function g

to be a wavelet is some localization both in posi-

tion and frequency (typically g 2 L1(R)\L1(R))

and the vanishing moment condition,
R
g = 0.

Intuitively, the wavelet transform acts as a �l-

ter selecting the details present in s at scale a

and position b. It is therefore a tool to analyse

the local regularity of functions. The accuracy

of the wavelet analysis depends on the choice of

the wavelet. A convenient class of wavelets is

the following. Let S(R) be the Schwartz space

of smooth functions which, together with their

derivatives, decrease faster than any polynomial

and let S+(R) be the subspace of Schwartz func-

tions with no negative frequencies (that is bg(�) =
0 if � � 0). Functions in S+(R) have all moments

vanishing, that isZ
dx xng(x) = 0; n = 0; 1; 2; ::;

or, what amounts to the same, have a at Fourier

transform near zero. The wavelet dimensions are

now constructed in the following way. Take some

wavelet g in S+(R) and set

Gg(a; q) = kWg�(�; a)k
q
q :

The essential idea of the wavelet dimensions is

to look at the scaling of this function near zero.

However, for a good de�nition to be achieved,

one more integration over the scales is needed,

and therefore one de�nes

�g(a; q) = min

�Z
1

a

d�

�
Gg(�; q);

Z a

0

d�

�
Gg(�; q)

�
;

where the minimum is taken to excludes the case

which is trivially convergent. The (upper and

lower) wavelet dimensions ��q (�) are then de-

�ned by

��q (�) = lim
a!0

sup

inf

log �g(a; q)

log a

and do not depend on the choosen wavelet g in

S+(R) provided g 6= 0. Note that a wavelet

in S+(R) cannot have compact support (other-

wise its Fourier transform would be analytic and
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hence could not vanish on a semi-axis without

vanishing everywhere). However, admitting an

arbitrarily small error on the dimensions ��q , on

always may suppose that the analysing wavelet is

compactly supported. This is useful in the appli-

cations. An important particular case is the so-

called wavelet correlation dimension ��
2
, which is

known to govern the L2 asymptotic of its Fourier

transform.

Theorem 3.1 ([4]) If � is a �nite complex mea-

sure, then either � =2 L2(R) and

lim
p!1

sup

inf

log
R p

0
d� jb�(�)j2
log p

= ���
2
[�] (3.2)

or � 2 L2(R) and

lim
p!1

sup

inf

log
R
+1

p
d� jb�(�)j2

log p
= ���

2
[�]: (3.3)

For positive measures, the wavelet correlation

was shown ([1]) to coincide with the usual corre-

lation dimension (hence the name).

4 Recovering the wavelet dimen-

sions

We shall now propose a method to retrieve the

wavelet dimensions of the potential from the quan-

tities p�q by choosing an appropriate family of

initial states. In the following, we will adopt the

notation p�q [f ] and 	t[f ] for the quantities refer-

ring to the initial state f [respectively (f;�f 0)]

in the case of the Schr�odinger [resp. wave] equa-

tion.

4.1 Schr�odinger equation

In that case, the results are limited to the wavelet

correlation dimension ��
2
. Suppose we can pre-

pare some initial state f in S+(R). Then

Proposition 4.1 For all b =2 supp(V ), we have

p�[fb;a] = a2 kWgV (�; a)k
2 +O(a2); a! 0;

(4.1)

where the wavelet g 2 S+(R) is essentially a

primitive of f : bg(k) =p
�=8 bf(k=2)=k.

Remark: the condition b =2 supp(V ) is a technical

condition to avoid the contribution of the bound

states.

It follows directly from the last result that the

wavelet correlation dimension can be calculted

by varying the family of initial states fba:

Corollary 4.2 For all b =2 supp(V ), we have

lim
a!0

sup

inf

log �(b; a)

log a
= minf��

2
[V ]; 0g;

where

�(b; a) =

Z
1

a

d�

�3
p�[fb;�]:

Remark: this result is interesting only if ��
2
[V ] �

0, that is V =2 L2(R). But this is always the case

for singular measures.

4.2 Wave equation

Stronger results can be shown in the case of the

wave equation. The wave-packets 	t turn out

to be an experimental wavelet transform of the

potential, where the time plays the role of the

position parameter and the central frequency of

the initial state the scale parameter.

Theorem 4.3 Let the initial state 	t=0 = f 2

W 1(R) have support on 
� (i.e left of the po-

tential). Choose bin; b and bout and set t = 2b�

bin � bout. We then have for bout large enough

	t[fbin;a](bout) = aWhV (b; a=2) +O(a); (4.1)

where h is essentially a primitive of f : bh(k) =
i
p
�=8 bf(�k)=k.
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Hence, given some source point bin and some

other observation point bout outside of the region

of interaction, we can analyse the potential at

any position inside by choosing the time accord-

ingly. Another consequence is that the whole set

of wavelet dimensions can be recovered.

Proposition 4.4 Suppose V is su�ciently sin-

gular in the sense that

lim
a!0

kWhV (�; a)k
q
q =1 (4.2)

for some (and hence all) h 2 S+(R). Then for

the integrated q-energy of the wave-packets

�q(a) =

Z
1

a

d�

�q+1
p�q [fbin;�]

we have

lim
a!0

sup

inf

log �q(a)

log a
= ��q [V ] + �n; (4.3)

where the error term �n goes to zero as the num-

ber of vanishing moments n of the initial state f

increases: �n ! 0; n!1.

Remark: the condition (4.2) is always satis�ed

for singular measures.
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