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1 Introduction

The theory of electrical networks was founded by
Ohm, Kirchho�, Helmholtz and Maxwell in the mid-
dle of the nineteenth century (see Wunsch [1], Bele-
vitch [2]). It became one of the most sucessful the-
oretical concepts with many applications in electri-
cal engineering and physics. In contrast to the the-
ory of mechanical systems { Newton's mechanics {
only very few researchers were interested in develop-
ing systematic foundations of the theory of electrical
networks. Based on Kircho�'s ideas the ingredients
of network theory are some kind of discrete topology
(e.g. graph theory or algebraic topology) and cer-
tain real- or complex-valued functions de�ned on it.
A main aspect of network theory is that only a re-
stricted number of these functions, which are called
network elements, are su�cient for modelling a large
class of electrical and electronic circuits.

Most of the exibility of network theory is related
to the fact that each network element can be de-
scribed independently. From a physical point of view
the functionality of circuit devices is represented by
a certain collection of these \lumped" network ele-
ments. The interaction of network elements is repre-

sented in the case of Kirchho� networks by an ideal
transformer n-port (see e.g. Mathis [3]) where a de-
scription by means of network graphs is a special case.
It can be shown that this kind of interaction is char-
acterized by energy conservation and reciprocity (see
e.g. Mathis, Pauli [4]). Although this concept of
electrical networks can be used in a very exible man-
ner to describe models of electrical and electronic cir-
cuits it leads to unphysical situations. A simple ide-
alized model of an ampli�er that includes a controlled
source can already violate the �rst law of thermody-
namics.

On the other hand many useful theorems of lin-
ear as well as nonlinear network theorems are known
(e.g. Mathis, Pauli [4], Hasler [8], Chua et al. [7]) and
therefore the theory of electrical networks is a basic
tool of electrical and electronic engineers. Consider-
ing the rare number of abstract formalizations of this
theory (e.g. Ghenzi [6], Slepian [5], Reibiger [9]) we
�nd a veri�cation of the above mentioned statements
that unphysical situations in network theory in the
sense of thermodynamics cannot be avoided because
corresponding thermodynamic restrictions are miss-
ing. In the following we will discuss further defects
in network theory with respect to thermodynamics



where this physical theory can be interpreted as a
very general framework to classify physical and un-
physical situations. For our discussion we consider
some recent results in the theory of nonlinear noisy
electrical networks (see Weiss, Mathis [13]) and its
consequenses for the theoretical foundations of elec-
trical networks. A main subject of this paper is a
generalization of Nyquist's formula for thermal noise
which has been derived for nonlinear reciprocal net-
works.

2 Fluctuation-Dissipation

Theorems

2.1 Nyquist's Formula

The theory of statistical irreversible thermodynamics
(see, e.g., [10], [11]) predicts an inseparable relation
between dissipation and uctuations. This relation
manifests itself in so-called uctuation-dissipation re-
lations (theorems) FDRs: Any dissipative system ex-
hibits uctuations, which are caused by the thermal
coupling between the system and its environment (a
heat bath at absolute temperature T ). In circuit the-
ory, the linear FDR is known as Nyquist's formula
[12]. The (thermal) uctuations of a linear conduc-
tor of resistance R at temperature T are indepen-
dent of device speci�c details like shape, size or cur-
rent transport mechanism. Instead, the uctuations
only depend on resistance R and temperature T , and
can be represented by a Gaussian white noise cur-
rent source in parallel to the noise free resistor, with
spectral density

SI(f) =
2kT

R
(1)

and vanishing mean value, see Fig. 1. A dual for-
mulation in terms of a voltage source with spectral
density

SU (f) = 2kTR (2)

in series to the noise free resistor exists. The equa-
tions (1), (2) hold provided the current through R is
\su�ciently small". It is important to understand
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R
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Figure 1: Norton noise equivalent circuit for linear
resistor with thermal noise

that the circuit in Fig. 1 is merely a representa-

tion of the uctuating current i through the resistor.
The current's formal decomposition into a noise free
current I and a noise current in, i = I + in, where
I =< I > is the statistical average of i, allows to rep-
resent internal uctuations by the noise source (1),
i.e. as if there were external noise. In contrast to ex-
ternal noise sources the source (1) cannot be switched
o�.

For nonlinear dissipative systems a similar \cou-
pling" between dissipation and uctuations exists, al-
though it is much more di�cult (if possible at all) to
�nd explicit nonlinear FDRs. Stratonovich has de-
rived nonlinear Markov FDRs for nonlinear dissipa-
tive systems up to dissipative nonlinearities of third
order polynomials [11]. Weiss and Mathis have ap-
plied the concept to electrical networks (see, e.g., [13],
[14]).

In the next section, we will sketch the derivation
of linear and nonlinear Markov FDRs for electrical
circuits, and we will discuss the implications of this
(partial) embedding of circuit theory into nonequilib-
rium thermodynamics.

2.2 Derivation of Nyquist's Formula

In order to explain the basic principles behind the
derivation of Nyquist's formula, it is su�cient to con-
sider the linear RC circuit in Fig. 2

dV

dt
= �

1

RC
V; V (t0) = V0 (3)



which shall be close to thermodynamic equilibrium
at temperature T . Again, we interpret V as the sta-
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Figure 2: Linear RC circuit with thermal noise

tistical average < v > of a stochastic process v. To
describe the dynamics of the noisy circuit, a Fokker-
Planck equation for the conditional probability den-
sity P (V; t) � P (V; tjV0; t0)

@P (V; t)

@t
= �

@

@V

�
a(V )P (V; t)

�
+
b

2

@2P (V; t)

@V 2
(4)

with initial condition

P (V; t0jV0; t0) = �(V � V0) (5)

can be used (see p. 115 in [10]). Using V =< v >V0 ,
the drift coe�cient a(v) is identi�ed with the right-
hand side of the non-uctuational equation (3)

a(V ) = �
1

RC
V (6)

The conditional statistical average < : >V0 denotes
the average over those ensemble members having the
same initial voltage V (t0) = V0 (see, e.g., p. 61 in
[15]). The di�usion coe�cient b is found by inserting
the stationary equilibrium distribution

Peq(V ) = N exp

�
�
F (V )

kT

�
(7)

with the free energy F

F (V ) =
1

2
CV 2 (8)

into (4)

b =
2kT

RC2
(9)

(7) is known from statistical equilibrium thermody-
namics. (One of the few basic principles of classical
irreversible thermodynamics, which deals with sys-
tem states in a close neighborhood of thermodynamic
equilibrium, is to embed the equilibrium theory as a
limiting case in the nonequilibrium theory (see \prin-
ciple of dynamic equilibrium", p. 3 in [11]).) (9) is
the linear Markov FDR for the circuit in Fig. 2. Its
equivalence to Nyquist's formula (1) is easily shown
via the stochastic di�erential equation (SDE)

dv = �
1

RC
v dt �

r
2kT

RC2
dw; v(t0) = v0 (10)

which is stochastically equivalent to the FPE (4). dw
denotes the di�erential of a Wiener process. A gen-
eralization to multidimensional linear RLC circuits is
possible, provided the networks under study are recip-

rocal (see [16], [13]). Non-reciprocal networks are ac-
tive systems and exhibit stationary non-equilibrium
states. For such systems the stationary distribution
Pstat, which replaces Peq , cannot be determined from
�rst principles (from equilibrium statistical thermo-
dynamics).

2.3 Nonlinear Irreversible

Thermodynamics

When the noisy circuit is nonlinear

dV

dt
= �

1

C
g(V ) (11)

a description in terms of an FPE, even with nonlin-
ear coe�cient functions a(V ), b(V ), is insu�cient,
because such a description does not account for non-
Gaussian noise source contributions (see, e.g., [11],
[14]). The same holds for the corresponding non-
linear SDE. Non-Gaussian noise source contributions
are needed to ensure the thermodynamic correctness
of the noise model, namely to ensure the validity
of the second law of thermodynamics in the pres-
ence of dissipative nonlinearities. They can be ex-
pressed by \generalized FPEs" with third and higher
order derivatives, so-called Kramers-Moyal equations



(KMEs)

@P (V; t)

@t
=

1X
n=1

(�1)n

n!

@n

@V n
f�n(V )P (V; t)g (12)

Clearly, the KME (12) comprises the FPE (4). KMEs
arise from formal power series expansions of the mas-
ter equation for Markov processes (see, e.g., [17]).
To establish nonlinear FDRs means to determine the
unknown coe�cients in (12). This will be done by
a generalization of the method used to establish the
linear FDR (9).
Since nonlinear resistors cause a coupling between

dissipative and resistive network elements [14], it
is necessary to switch over to the multidimensional
KME

@P (X; t)

@t
= (13)

1X
m=1

(� 1)m

m!

rX
�1:::�m=1

@m[K�1:::�m(X)P (X; t)]

@X�1 : : : @X�m

with initial condition

P (X; t0jX0; t0) = �(X �X0) (14)

Here x denotes an r-dimensional vector of uctuat-
ing state variables (inductor currents and capacitor
voltages). The corresponding deterministic variable
X =< x >X0

is assumed to obey an explicit nonlinear
system of autonomous ordinary di�erential equations
(ODEs)

_X = f(X); X(t0) = X0 (15)

In practise, only a small number of powers can be
considered in the in�nite series (13). For a systematic
determination of the unknown coe�cients K�1:::�m

it is necessary to transform the KME (13) into a
power series in a small parameter (compare van Kam-
pen's 
-expansion [18]). In thermodynamic equilib-
rium the m-fold moments (statistical mean values)
hX�1 : : : X�mi are proportional to (kT )

m�1

hX�1 : : : X�mi � (kT )m�1 (16)

Regarding m-fold moments in nonequilibrium situa-
tions close to thermodynamic equilibrium the same

relation should be valid. Using this assumption and
the relation between unknown coe�cients andm-fold
conditional nonequilibrium moments

K�1 ::: �m(X) = lim
�!0

h�X�1 : : : �X�miX

�
(17)

one obtains

K�1:::�m(X) � (kT )m�1 (18)

Hence it is natural to choose kT as the small expan-
sion parameter.
As in the linear case, we again demand the equilib-

rium distribution known from equilibrium statistical
thermodynamics

Peq(X) = N exp

�
�
F (X)

kT

�
(19)

to be the unique stationary solution of (13). Exis-
tence and uniqueness of Peq is obtained by a suit-
able restriction of dissipative nonlinearities and/or of
the range of allowed X-values: Only passive current-

or voltage-controlled nonlinear resistors I = g(V ),
V = r(I), can be considered

V g(V ) � 0 8V; V g(V ) = 0, V = 0

(20)

I r(I) � 0 8I; I r(I) = 0, I = 0

Due to (20), none of the resistors supplies power to
the circuit connected with its terminals. This pre-
vents an isothermal conversion of heat to work (see
p. 185 in [19]).
To determine the unknown coe�cients K�1:::�m in

the multidimensional, nonlinear case, additional con-
straints are required. These contraints must not be
too restrictive in order to leave the class of treatable
systems large enough. Furthermore, the constraints
must be in agreement with basic thermodynamic re-
quirements, especially with the second law of ther-
modynamics.
One such general principle is the principle of mi-

croscopic time-reversal symmetry. To understand
this principle, we assume the macroscopic equilibrium
Peq(X) to be caused by an underlying non-dissipative



microscopic Hamiltonian system with generalized co-
ordinates q and momenta p. We now demand that

the microscopic dynamics is invariant under time-

reversal transformation

t! �t; qi(t)! qi(�t) = qi(t); (21)

pi(t)! pi(�t) = �pi(t)

i.e., the system Hamiltonian H(q; p) must be in-
variant under the transformation (21). Since the
Hamiltonian determines the Gibbs equilibrium dis-
tribution Peq(q; p) of microscopic states via Peq �

exp(�H=kT ), the equilibrium distribution of micro-
scopic states is also invariant under time reversal

Peq(q(�t); p(�t)) = Peq(q(t); p(t)) (22)

Using the functional relationsX(q; p) transformation
rules for the macroscopic variables can be inferred

X�(t)! X�(�t) = ��X�(t); �� = �1 (23)

Variables Xi with �� = 1 are called time-even vari-
ables, variables with �� = �1 are called time-odd.
Using microscopic time-reversal symmetry (22) and
(23) we get the \principle of detailed balance" as a
requirement for the macroscopic (conditional) prob-
ability densities (see, e.g., [20])

Pstat(�X) = Pstat(X) , (24)

P (X 0
jX)Pstat(X) = P (�X j�X 0)Pstat(X

0)

Detailed balance (24) is one of the corner-stones of
linear and nonlinear irreversible thermodynamics.
As mentioned before, only a few powers of the se-

ries (13) can be considered. Due to Equation (17),
the nth power of the series (13) corresponds to the
(n � 1)th power of nonlinearity in the deterministic
ODE (15). Therefore, Equation (15) is expanded in
a Taylor series at X = 0. This expansion is made in
the forces Y� conjugate to the X�

Y� :=
dF (X)

dX�
(25)

_X� = f(X(Y )) =: '(Y ) (26)

=
X
�

'�; �(0)Y� +
1

2

X
�; 

'�; �(0)Y� Y + : : :

where the abbreviation

'�; �1:::�m �
@m'�

@Y�1 : : : @Y�m
(27)

has been used. As a consequence of time reversal
symmetry, the Jacobian of '(Y = 0) exhibits a gener-
alized symmetry, which is known as Onsager-Casimir

reciprocity

'�; �(0) = ����'�; �(0) (28)

with �� = 1 for time-even Y� and �� = �1 for time-
odd Y�. Equation (28) only holds for reciprocal elec-
trical networks. The standard theory of irreversible

thermodynamics, which describes uctuations in a

neighborhood of thermodynamic equilibrium, is not

applicable to non-reciprocal networks!

Finally, to ensure consistency, the coe�cients
K�1 ::: �m(X) of the KME (13), which may be general
nonlinear functions of X , also have to be expanded in
a Taylor series at X = 0. In these series, the highest
relevant order is determined by the highest order con-
sidered in the ODE (26) and by the kT -dependence
(18) of the K�1 ::: �m(X).
For classes of networks which �t into the frame of

the thermodynamic theory discussed here, it is pos-
sible to determine the KME (13) from the knowledge
of the deterministic ODE and the networks free en-
ergy F (see [13], [14]). The knowledge of the KME
amounts to a description of deterministic and uctu-
ational behavior, where of course only the \thermo-
dynamic uctuation types" thermal noise and shot
noise can be included. Before we proceed we have
to discuss the implications of the \thermodynamic
frame" for electrical networks, in order to choose a
class of networks to which the concept is applicable.

2.4 Implications for Electrical

Networks

1.) It can be shown that voltages V and charges Q
are time-even whereas currents I and uxes �
are time-odd variables. Thus, from a thermody-
namic point of view, voltages and currents are

not dual. As a consequence, FDRs in current
and voltage formulation are not dual in the gen-
eral nonlinear case. The duality of the linear



FDR (1), (2) appears to be an exception which
is caused by the spectral densities' independence
of state variables.

2.) In general, external driving forces, which yield a
non-equilibrium stationary state instead of ther-
modynamic equilibrium, destroy time-reversal
symmetry (see, e.g., [21]). Hence the concept
based on detailed balance is no longer applicable.
As a consequence, the linear theory of networks

with thermal coupling to their environment can-

not be generalized to the nonlinear case by lin-

earization in a bias point. The only exception
from this rule is the case of zero bias (see, e.g.,
[22], [23]). For Nyquist's formulas, this means
that they can be generalized to

SI(f) = 2kT
dI

dV

����
V=0

; SU (f) = 2kT
dV

dI

����
I=0

(29)

but not to other bias points V0 6= 0 and I0 6= 0.
Thus, we restrict our discussions to sourceless
networks. (In the linear case, time constant in-
dependent sources can be considered, see, e.g.,
[14]).

3.) In networks with controlled sources it is not
possible to determine the stationary distribu-
tion Pstat from �rst principles (see [24]). Since
detailed balance is (in general) not valid, the
resulting linearized di�erential equations are
not Onsager-Casimir reciprocal. Hence non-

reciprocal networks cannot be treated in the

framework of standard thermodynamic uctua-

tion theory of electrical networks. (Of course,
there are thermodynamic concepts for uctua-
tions in stationary nonequilibrium states, see,
e.g., [25], [21]. These concepts are fundamen-
tally di�erent from the theory of uctuations
in the neighborhood of thermodynamic equilib-
rium, they are much less powerful, and they are
not used to derive Nyquist's formula (1)).

4.) The free energy F of a source-free passive non-
linear RLC network equals the total energy of
the dynamic elements. As a consequence, the
equilibrium distribution (19) of such networks

is completely determined by the energies of the
resistive elements. To ensure detailed balance
(24) in case of nonlinear current controlled two-
terminal inductors L(I) := d�=dI and volt-
age controlled two-terminal capacitors C(V ) :=
dQ=dV , the inductor energiesW (�) =

R
I(�)d�

have to be even functions of the uxes �, so
that W (�(�t)) = W (�(t)) is valid. No such
requirement for capacitors is necessary. Due
to Q(�t) = Q(t) we always have W (Q(�t)) =
W (Q(t)). Since the inverse functions of �(I) and
Q(V ) are needed (see [13]), both characteristics
must be strictly monotonely increasing.

5.) Finally the concept of independent lumped net-
work elements becomes obscure because a non-
linear noise causes a coupling of network ele-
ments which are independent from a determin-
istic point of view (see also M�uller [26]). This
is illustrated in the example in section IV; see
especially equ. (42) where there is a correction
term �kT=4C which depends on the capacitor
and the resistor at the same time.

III. NONEQUILIBRIUM

THERMODYNAMICS OF COMPLETE

NETWORKS

As an example we consider the application of
Stratonovich's Nonequilibrium Thermodynamics to
the class of complete networks. (For a more detailed
description of complete networks, see ([28], [36] or
[37].) Complete networks are reciprocal nonlinear
RLC networks with either voltage- or current con-
trolled resistors. Their network equations can be
written in terms of a single scalar function, the mixed

potential function P(i; v)

L�(i�)
di�

dt
=

@P(i; v)

@i�

(30)

C�(v�)
dv�

dt
= �

@P(i; v)

@v�

The equations (30) are called the Brayton-Moser

equations. P is a function of the dynamical vari-
ables (iL; vC) � (i; v) and is given in terms of the



current potential F (i), the voltage potential G(v) and
a constant matrix 

P(i; v) = F (i) � G(v) + (i; v) (31)

P describes the inuence of independent sources
and (nonlinear) resistors. For complete networks, a
Hamiltonian description is known ([36], [37]). The
Hamiltonian function H equals the total energy of
the dynamical network elements

H(q; �; pq ; p�) = WL +WC

=
�X

�

Z
_q�(��) d�� (32)

+
X
�

Z
_��(q�) dq�

����
( _q; _�)=h(q;�; pq;p�)

q and � are the charges and uxes associated with i

and v. To ensure the existence of the Hamiltonian
(32) and time reversal symmetry, the inductor uxes
��( _q�) and the capacitor charges q�( _��) must be odd
functions of their arguments.

When the Brayton-Moser equations (31) are ex-
panded into the Taylor series (26) and the free en-
ergy F of the electrical networks is associated with
the energy of the capacitors and the inductors, the
unknown coe�cients K�1:::�m of the KME (13) can
be derived from Stratonovich's results (pp. 128, [11]).
For di�erent powers of nonlinearity in the expansion
of (30) di�erent coe�cients are obtained. For simplic-
ity, we only consider source-free networks with linear
dynamical elements here. (For the more general case
see [13]).

Linear Approximation

When the network equations (30) are linear or lin-
earized, the KME (13) becomes a \linear" FPE

@P (i; v)

@t
= L1 P (i; v) = (33)(

�
X
�1�2

1

L�1
F;�1�2(0)

@

@i�1
i�2 �

X
�1�2

�1�2
vr+�2
L�1

@

@i�1

+
X
�1�2

�2 �1�r

C�1

i�2
@

@v�1
�
X
�1�2

1

C�1

G;�1�2(0)
@

@v�1
v�2

�
X
�1�2

kT

L�1L�2
F;�1�2(0)

@2

@i�1@i�2

�
X
�1�2

kT

C�1C�2

G;�1�2(0)
@2

@v�1@v�2

)
P (i; v)

Here, the abbreviation @pF=@i�1 : : : @i�p �; F;�1:::�p
has been used. The matrix  has elements � � .
Equation (33) equals the conventional description
of thermal noise in a linear, source-free complete
network and reproduces the multidimensional linear
FDR. Thus, (33) is a time domain formulation of
Nyquist's theorem. An equivalent result can be ob-
tained with the well known linear Langevin theory of
thermal noise. The thermal noise is fully determined
by the deterministic network equations, i.e., by the
deterministic network parameters, by the functions
F , G and by the matrix . Consequently, arbitrary
moments of functions of (i; v) can be calculated, af-
ter (33) has been solved for P . (Instead of solving
(33) for P , the so-called \method of moments" can
be used to derive ordinary di�erential equations for
the moments, which are usually much easier to solve
(see, .e.g, [17]).

Quadratic Approximation

When the right-hand side of (30) contains linear and
quadratic terms, additional derivatives of �rst and
second order occur. Besides, derivatives of order
three occur. The KME (13) becomes

@P (i; v)

@t
=L1 P (i; v) + L2 P (i; v) = L1 P (i; v) (34)

+
1

2

(
�
X

�1�2�3

1

L�1
F;�1�2�3(0)

@

@i�1
i�2 i�3

+kT
X
�1�2

1

L�1L�2
F;�1�2�2(0)

@

@i�1

�
X

�1�2�3

1

C�1

G;�1�2�3(0)
@

@v�1
v�2v�3

+kT
X
�1�2

1

C�1C�2

G;�1�2�2(0)
@

@v�1

�3
X

�1�2�3

kT

L�1L�2
F;�1�2�3(0)

@2

@i�1@i�2
i�3



�
X

�1�2�3

kT

C�1C�2

G;�1�2�3 (0)
@2

@v�1v�2
v�3

�
X

�1�2�3

2(kT )2

L�1L�2L�3
F;�1�2�3(0)

@3

@i�1@i�2@i�3

)
P (i; v)

Again, the \thermodynamic noise" is fully deter-
mined by the deterministic system. Equation (34)
contains derivatives of third order and is more gen-
eral than a FPE. Therefore, when (quadratic) non-

linearities are present, neither a FPE nor a (general-

ized) Langevin equation can serve as a correct (com-

plete) description of thermal noise. In other words,
in general, no correct noise source approach exists.
Nevertheless, in certain special cases it is possible to
derive a correct FPE from (34): (i.) When no induc-
tors are present, the current potential F vanishes and
(34) becomes a nonlinear FPE. (This di�erent behav-
ior of inductors and capacitors seems to be strange
from the viewpoint of network theory but appears to
be natural in the framework of nonequilibrium ther-
modynamics. It is due to the di�erent behavior of
currents and voltages under time reversal symmetry.)
(ii.) For the computation of moments up to second
order (spectral densities), the coe�cients O((kT )2) of
second order in kT can be omitted from (34). This
holds, because second moments are O((kT )1). (Gen-
erally speaking, m-th moments are O((kT )m�1), see
equation (16). Therefore, terms of O((kT )m) have
no physically relevant meaning for the calculation of
m-th moments.) When quadratic nonlinearities are

present, a \nonlinear" FPE (a generalized Langevin

equation) is su�cient to determine all �rst and sec-

ond moments of (i; v).

Cubic Approximation

When nonlinearities of third order are considered, ad-
ditional derivatives up to fourth order occur

@P (i; v)

@t
= L1 P (i; v) + L2 P (i; v) (35)

+

 
�
1

6

X
�1�2�3�4

1

L�1
F;�1�2�3�4(0)

@

@i�1
i�2 i�3 i�4

+
1

2

X
�1�2�3

kT

L�1L�3
F;�1�2�3�3(0)

@

@i�1
i�2

�
1

6

X
�1�2�3�4

1

C�1

G;�1�2�3�4(0)
@

@v�1
v�2v�3v�4

+
1

2

X
�1; �2; �3

kT

C�1C�3

G;�1�2�3�3(0)
@

@v�1
v�2

+
1

4

X
�1�2�3�4

kT

L�1L�2

�
c�1 �2; �3 �4 � 2F;�1�2�3�4(0)

�

�
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�ij is the Kronecker-�. The coe�cients c�1 �2; �3 �4 ,
c�1�2; �3�4 cannot be determined in the framework
of the theory of nonequilibrium thermodynamics.
When nonlinearities of third or higher order are
given, it is impossible to determine the unknown
coe�cients of the KME (13) completely, i.e., the

thermal noise is not fully determined by the deter-

ministic network equations. Unfortunately, it is not
known of which order in kT the unknown coe�cients
c�1 �2; �3 �4 , c�1�2; �3�4 are. They might be O((kT )1).
Thus, neither an omission of all derivatives of orders
higher than two nor an omission of all unknown coe�-
cients leads to a fully determined systematic approx-
imation. When arbitrary nonlinearities are present,

no FPE (Langevin equation) can be derived as a sys-

tematic approximation for the calculations of second

or higher moments. Of course, one can omit all un-



known terms and hope that their inuence on sec-
ond and higher moments will be small. On the other
hand, it should be possible to determine the unknown
coe�cients experimentally by comparison with mea-
surements. For every unknown coe�cient one 2nd or
higher order moment has to be measured. This pro-
cedure leads to a system of m algebraic equations for
m unknowns.

Approximations of Fourth and Higher Orders

As the number of undeterminable coe�cients in-
creases when higher orders of nonlinearity are con-
sidered, the number of measurements of higher order
moments has to be increased. Therefore, it does not
seem to be a good idea to consider Taylor polynomi-
als of much higher order. Since the basic e�ects of the
nonlinearities in the neighborhood of an equilibrium
(operating point) should already occur in lower order
approximations, it is not even necessary to proceed
much further.

IV. EXAMPLE

As an example we consider the RC network in Figure
1 with a nonlinear resistance in cubic approximation

du

dt
= �

1

C

�
Gu +

1

2
u2 +

1

6
�u3] (36)

The corresponding mixed potential function is

P (u) = �G(u) =

Z �
Gu +

1

2
u2 +

1

6
�u3]du (37)

Using (33) - (35) we �nd

@P (u; t)

@t
= (L1 + L2 + L3)P (u; t) (38)

with the operator L1 of the linear approximation

L1 =
@

@u

G

C
u +

@2

@u2
GkT

C2
(39)

the operator L2 of the quadratic approximation

L2 =
@

@u

�


2C
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2C2

�
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@2

@u2
kT

2C2
u (40)

and the operator L3 of the cubic approximation
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2C2
u

�
(41)

+
@2

@u2
(2� + �)

�
kT

4C2
u2 �

(kT )2

4C3

�

+
@3

@u3
(4� + 3�)u

(kT )2
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� denotes a theoretically undeterminable parameter.
In the quadratic approximation � = 0 ) L3 = 0 of
(39) the KME becomes a pure FPE with an equiva-
lent Langevin equation

dU

dt
=�

1

C
fGU +

1

2
U2

�
kT

4C
g + f1 +

U

2G
g
1=2�(t)

< �(t)�(t0) >=
2GkT

C2
�(t� t0) (42)

As the correction term kT
4C is of order O(kT ) it has

no inuence on the mean value < U >= u, which is
O(1). Equation (42) can be interpreted in terms of a
controlled noise source with g(u) = Gu+1=2u2 and
h(u) = f1 + U

2G
g1=2

g(u)

C

h(u)�

Figure 3: Equivalent noise source model

V. CONCLUSIONS

In this paper we consider the implications on the the-
ory of electrical networks imposed by nonlinear ir-
reversible thermodynamics which forms the basis of
the theory of nonlinear noisy electrical networks. It
is found that some of the well known theorems of de-
terministic network theory are no longer valid if the
network description meets thermodynamic require-
ments. Examples are duality of currents and volt-
age and linearization in operating points. Finally the



nonlinear noise causes a coupling between di�erent
network elements which obscures the network con-
cept of independent lumped network elements.
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