
A Methodology for the Definition of Programming Languages

NIKOLAOS S. PAPASPYROU
Department of Electrical and Computer Engineering

National Technical University of Athens
Polytechnioupoli, 15780 Zografou, Athens

GREECE

Abstract: The formal definition of a programming language is a valuable tool for the study, design, evaluation and
even for the implementation of the language. A methodology for developing formal definitions of programming
languages is proposed in this paper. We follow the denotational approach and use monads, in order to improve the
modularity and elegance of the result. The definition of semantics is divided in three distinct consecutive phases:
static, typing and dynamic semantics, each using the results of the previous two. Emphasis has been given on
the straightforward translation of the developed definitions into abstract interpreters, in order to obtain verifiably
correct prototype implementations for the studied languages. The methodology is described through a complete
example, defining a small imperative programming language. Its use for the definition of ANSI C has resulted in
considerable success.

Key-Words: Programming languages, formal definition, denotational semantics, monads.

1 Introduction
The study of programming languages invariably distin-
guishes between two fundamental features:syntaxand
semantics. Although the two cannot always be clearly
separated, syntax refers to the appearance and structure
of the well-formed sentences of the language, whereas
semantics refers to the meanings of these sentences.
Every person who uses a programming language must
understand both its syntax and semantics at some level
of abstraction. Programmers usually understand a pro-
gramming language by means of examples, intuition
and descriptions in natural language. Such descrip-
tions are informal, typically based on a set of assump-
tions about the reader’s knowledge and understanding,
and therefore inherently ambiguous.

In the definition of programming languages, the
syntax usually formally specified. On the other hand,
semantics is most commonly specified in an informal
way. Research in the area of formal programming lan-
guage semantics started in the 1960s. Since then, the
product of more than three decades of research has
been the development and thorough study of numerous
methods and formalisms, usually classified for histori-

cal reasons as following one of three main approaches:
operational, denotationalor axiomaticsemantics.

Denotational semantics is a formalism introduced
by Scott and Strachey in the late 1960s [1, 2, 3]. Ac-
cording to the denotational approach, semantics is de-
scribed by attributing mathematicaldenotationsto pro-
grams and program segments. Denotations are ele-
ments of appropriate mathematical structures called
domains. Variations of the�-calculus over domains
are commonly used as metalanguages for expressing
denotations.

The main objective of our research is to develop and
evaluate a methodology for the formal definition of
programming languages, with the main effort lying on
the definition of semantics. Our methodology is de-
scribed in this paper through a simple, yet not trivial
example of a programming language calledL. Three
distinct consecutive phases for the definition of seman-
tics are proposed, each phase using the results of the
previous ones. The methodology has been used with
considerable success for the definition of ANSI C [4].

The rest of the paper is structured as follows. In
Section 2, an overview of the proposed methodology

is given and the various stages in the formal defini-
tion of a programming language are briefly presented.
Section 3 contains a short introduction to monads and
their correspondence with computations. In the fol-
lowing sections 4 through 7 the various stages of the
proposed methodology are presented in detail, using
a small imperative programming language calledL as
an example. Section 8 discusses the implementation
of programming language definitions obtained by the
proposed methodology, in the form of prototypical in-
terpreters. Section 9 attempts an evaluation of the pro-
posed methodology, discussing the results of an am-
bitious project concerning the definition of ANSI C.
Finally, Section 10 concludes with a few remarks and
directions for future research.

2 Overview of the methodology
According to the proposed methodology, the formal
definition of a given programming languageL can be
best understood as part of anabstract interpreterfor
programs written inL. Such an interpreter is depicted
in Fig. 1 as a data process. The left part of the figure
is a module diagram of the interpreter. It shows the
chain of actions performed by the interpreter as well
as the data that is processed by these actions. Each ac-
tion uses the results of the previous actions. The initial
piece of data is asource programand the final result
is a representation of this program’smeaning, i.e. a
description of what the program does when executed.
The right part of the figure gives a small example illus-
trating the function of the interpreter, where the source
language is taken to be C.

The interpreter consists of the following three lay-
ers, represented in Fig. 1 as big boxes. Each layer con-
tains a series of actions.

� Syntactic analysis: aims at checking the syntactic
validity of the source program and signalling syn-
tax errors. Syntactically correct programs are trans-
formed to abstract parse trees, which represent their
syntactic structure in detail. This layer consists of
three actions:

� Lexical analysis: transforms the source program
to a sequence of lexical units, also calledtokens.

� Concrete syntax: checks the syntactic validity of
the source program by grouping tokens together
in more complex syntax entities.

� Abstract syntax: simplifies the parse tree by ex-
tracting superfluous information and results in an
abstract parse tree.

� Semantic analysis: aims at checking the semantic
validity of the program, as represented by the ab-
stract parse tree, and signalling semantic errors, e.g.
use of undeclared identifiers or type mismatches. It
contains two actions:

� Static semantics: aims at detecting static se-
mantic errors, e.g. redefinition of an identifier
in the same scope, as well as associating iden-
tifiers with appropriate types or values. Static
semantics is based solely on the abstract syn-
tax. For each syntactically well-formed program
phraseP , its static semantic meaning is denoted
by fjP jg. Static semantic meanings are mathemat-
ical objects, typically type environments associat-
ing identifiers to types.

� Typing Semantics: aims at detecting type mis-
match errors, e.g. assignment to a constant
value, and at associating syntactically well-
formed phrases with appropriate phrase types.
Such associations are given by means of typing
derivations, that is, formal proofs that phrases are
well-typed. Typing semantics is based not only
on the abstract syntax of the program, but also on
static semantic environments.

� Execution: the main part of the interpreter. It con-
tains only one action:

� Dynamic Semantics: aims at defining the execu-
tion behaviour of well-typed programs. As a use-
ful side effect, run-time errors and other sources
of undefined behaviour are detected at the same
time. Dynamic semantics is based on the abstract
syntax, the static semantic environments and the
typing derivations. For each well-typed program
phraseP of type �, its dynamic semantic mean-
ing is denoted by[[P]]�. Such meanings are also
mathematical objects, typically functions describ-
ing aspects of the execution of the correspond-
ing program phrases. The typing derivation for
P is important, as the same phrase is allowed to
have different meanings when attributed different
types.

Fig. 1: An abstract interpreter forL.

Lexical Analysis

Concrete Syntax

Abstract Syntax

Static Semantics

Typing Semantics

Dynamic Semantics

C Program

Meaning

Tokens

Parse Tree

Abstract
Parse Tree

Type
Environment

Typing
Derivation

S
em

an
tic

 A
na

ly
si

s
S

yn
ta

ct
ic

 A
na

ly
si

s
E

xe
cu

tio
n

� Source program:
int main () {

int x;
/* do something with x */
return x++;

}

� Abstract syntax:
Declaration

Specifier

int

Init-Declarator

Declarator Initializer

x None

Expression

Unary Assignment

Identifier ++ (postfix)

x

� Static semantics:
e = fj int x; jg e�

= f “x” 7! data [int] g

� Typing semantics:

e ` x / data [int]
e ` x : obj [data [int]]
e ` x++ : exp [int]

� Dynamic semantics:

[[x++]]exp [int] s =

let ha; s0i= [[x]]obj [data [int]] s

v = s0[a]

in hv; s0[a 7! v + 1]i

3 Computations and monads
The concept of monads comes from category the-
ory. Monads have been proposed by Moggi as a use-
ful structuring tool for denotational semantics [5, 6].
Moggi demonstrated their use for representing differ-
ent aspects of computations and defined monads for
programming language features such as state, excep-
tions and continuations. In a short time, the idea of
monads became very popular in the functional pro-
gramming community as a way of structuring func-
tional programs and simulating non-functional fea-
tures. The work of Wadler [7] played a very important
role in this direction.

In the last few years, research related to the appli-
cation of monads in denotational semantics has fo-
cused on the combination of monads to structure se-
mantic interpreters. Monad transformers, which were
also first proposed by Moggi, have attracted the atten-
tion of many researchers. In the work of Liang, Hudak

and Jones [8], monad transformers are demonstrated to
successfully modularize semantic interpreters and the
lifting of monad operations is investigated.

The notion of computation is very significant in the
semantics of programming languages. IfD is a do-
main of values, thenM(D) can be taken to denote
a domain of computations which return values from
D. In this sense,M can be thought of as a domain
constructor which specifies the characteristics of com-
putations, e.g. whether they are deterministic, whether
they require access to the program state, or whether
they can cause run-time errors. This is the principal
concept behind the use of monads in denotational se-
mantics. In brief, a monad is a triplehM;unitM; �Mi,
whereM is a domain constructor,unitM : A! M(A)
and � �M � : M(A) � (A ! M(B)) ! M(B) are
polymorphic functions for arbitrary domainsA andB,
satisfying three monad laws.

The definition ofM reflects our notion of computa-

tion. The computation denoted byunitM v is usually
the simplest computation returning the valuev. If m is
a computation returning a valuev in D, then the com-
putation denoted bym �M f is the combined computa-
tion of m followed by computationf v. Many differ-
ent types of computations are implicit in the semantics
of programs and a number of monads is required to
represent them. Typical examples of such computa-
tions and related monads are:

� Error monad: Computations allowing errors.
� Value monad: Constant computations.
� State monad: Computations accessing the state
� Continuation monad: Computations accessing the

state and allowing unrestricted jumps.
� Powerdomain monad: Non-deterministic computa-

tions.

4 Syntax
The formal definition of a programming language be-
gins with the definition of its syntax. There are var-
ious standard formalisms for this purpose, the most
widely known and used being context-free grammars,
usually expressed in the Backus Naur Form (BNF) and
its variations. This formalism is used in the proposed
methodology. As a convention, non-terminal symbols
are written in italics. The symbol::= separates the two
sides of production rules, whereas the symbolj sep-
arates alternative productions. Finally, the symbol�

denotes the empty string.
Since the area of formal syntax specification has

been thoroughly studied and is not so interesting from
a researcher’s point of view, our definition of the syn-
tax of the example languageL will be slightly infor-
mal. We will only focus on the abstract syntax ofL,
which is given in Fig. 2. The intended semantics ofL

can be easily deduced from the abstract syntax. The
language supports variables of just one data type (in-
teger), functions and procedures to which parameters
can be passed by value or by reference, a variety of
statements including a loop statement and a variety of
expression operators.

5 Static semantics
Static semantics can be thought of as the symbol table
in our abstract interpreter. It calculates the environ-
ments containing type information for all identifiers

defined in the source program and, for this reason, it
mainly deals with the program’s declarations. At the
same time static semantic errors are detected. The def-
inition of static semantics can be very complicated in
the case of programming languages with rich type sys-
tems. It consists of two steps. At the first step, the
static semantic domains must be defined, together with
the basic operations that are allowed on the elements of
each domain. For this reason, a careful analysis of the
type system ofL is necessary.

Computations performed during this step are
compile-time computations and can typically be repre-
sented by a simple error monadE, defined below. An
additional operation on the monad, used for the gener-
ation of compile-time errors is given and it is easy to
prove that errors are correctly propagated through the
use of the standard monad operations.

� E(D) = D �U

I unitE : D ! E(D)

unitE = inl

I � �E � : E(A)� (A! E(B)) ! E(B)

m �E f = casem of

inl v) f v

inr u) inr u

I errorE : E(D)

errorE = inr u

From the abstract syntax ofL, it is apparent that
at least two classes of types exist. Adata typeis a
basic type of the language: one can assign values of
such a type to variables, pass them as parameters to
functions, use them in expressions, etc. The only data
type supported byL is integer . On the other hand, a
return-typeis a type that can be returned from a func-
tion. Apart from theinteger data type, the empty type
nothing can also be returned from a function.

At a closer look, one can identify more classes of
types. Another important class in the study of pro-
gramming languages is the class ofdenotable types,
that is, types that can be denoted by identifiers but
whose values cannot always be assigned to variables
or passed to functions as parameters. Functions inL,
are typical such values. They can only be used in ex-
pressions and statements in a limited way, i.e. in func-
tion calls. Identifiers inL can denote three kinds of
things: data objects (variables or parameters passed
by-value), reference objects (parameters passed by-
reference) and function names.

Fig. 2: Abstract syntax ofL.

program ::= body

body ::= definition-list statement-list

definition-list ::= � j definition definition-list

definition ::= var I as data-type j fun I (formal-parameter-list) as return-type bodyend

data-type ::= integer

return-type ::= data-type j nothing

formal-parameter-list ::= � j formal-parameter formal-parameter-list

formal-parameter ::= I as data-typebyval j I as data-typebyref

statement-list ::= � j statement statement-list

statement ::= skip j I := expressionj begin statement-listend j if conditionthen statementelse statement
j while conditiondo statementj call I (expression-list) j return j return expression

expression ::= n j I j call I (expression-list) j un-op expressionj expression bin-op expression

condition ::= true j false j not condition j expression rel-op expressionj condition log-op condition

expression-list ::= � j expression expression-list

un-op ::= + j -

bin-op ::= + j - j * j / j mod

rel-op ::= = j <> j > j < j >= j <=

log-op ::= and j or

Expression typesform yet another type class. Apart
from data types, expressions can also be ofboolean
type which can only be used in conditions. Finally, the
class ofphrase typescontains one type for each kind
of program phrase. All the type classes that were men-
tioned are defined below in the form of static semantic
domains. The values of the domain for phrase types
are further explained in Fig. 3.

� I : Ide (domain of identifiers)

� � : Typedat = integer

� r : Typeret = � j nothing

� � : Typeden = data [�] j ref [�] j func [r; p]

� v : Typeexp = � j boolean

� � : Typephr = prog j body [r] j stmt [r]

j decl j exp [v] j obj [�]
j arg [p] j prot [p] j par [�;m]

� m : Mode = byval j byref

As a particular case of static domains,static envi-
ronmentsare mappings from identifiers to appropri-
ate static type domains. In the case ofL, static type
environments are elements of domainEnv and map
identifiers of a program scope to denotable types. The
domainEnv and the required operations on its ele-
ments are shown below as an abstract data type. Its

Fig. 3: Static semantics, domain of phrase types.

Type Description

prog Complete program
body [r] Body of function returning a result of typer
stmt [�] Statement in a function returning a result of typer.
decl Declaration.

exp [v] Expression, whose result is an r-value of typev.
obj [�] Expression, whose result is an l-value of type�.
arg [p] Actual parameters to a function with prototypep.

prot [p] Formal parameters to a function with prototypep.
par [�;m] Formal parameter of type� and passing modem.

implementation is slightly perplexed because of nested
scopes and is not included in this paper.

� e : Env (domain of type environments)

I e� : Env (empty environment)

I � [�] : Env� Ide! E(Typeden) (lookup function)

I � [� 7! �] : Env� Ide�Typeden ! E(Env)

(update function)

I " � : Env! Env (new enclosed scope)

I # � : Env! Env (enclosing scope)

A second kind of static environment is also shown
below as an abstract data type. It represents function

Fig. 4: Static semantics forL, functions and equations.

I fjprogramjg : E(Env)

fjbodyjg = fjbodyjg e�

I fjbodyjg : Env! E(Env)

fjdeclaration-list statement-listjg = fjdeclaration-listjg

I fjdeclaration-listjg : Env! E(Env)

fj�jg = unit
fjdeclaration declaration-listjg = fjdeclarationjg ; fjdeclaration-listjg

I fjdeclarationjg : Env! E(Env)

fjvar I as data-typejg = �e: fjdata-typejg � (� �: e[I 7! data [�]])

fjfun I (formal-parameter-list) as return-type bodyend jg = � e:

fjreturn-typejg � (�r: fjformal-parameter-listjg � (�p: e[I 7! func [r; p]]))

I fjformal-parameter-listjg : E(Prot)

fj�jg = unit p�
fjformal-parameter formal-parameter-listjg =

fjformal-parameterjg � (� h�;mi: fjformal-parameter-listjg � (�p: h�;mi l p))

I fjformal-parameterjg : E(Typedat �Mode)

fjI as data-typebyval jg = fjdata-typejg � (� �: unit h�; byvali)
fjI as data-typebyref jg = fjdata-typejg � (� �: unit h�; byrefi)

I Ffjformal-parameter-listjg : Env! E(Env)

Ffj�jg = unit
Ffjformal-parameter formal-parameter-listjg = Ffjformal-parameterjg ; Ffjformal-parameter-listjg

I Ffjformal-parameterjg : Env! E(Env)

FfjI as data-typebyval jg = �e: fjdata-typejg � (� �: e[I 7! data [�]])

FfjI as data-typebyref jg = �e: fjdata-typejg � (� �: e[I 7! ref [�]])

I fjdata-typejg : E(Typedat)

fjinteger jg = unit integer

I fjreturn-typejg : E(Typeret)

fjdata-typejg = fjdata-typejg
fjnothing jg = unit nothing

prototypes, i.e. mappings from the formal parameters
of a function to their type and passing mode. The order
of formal parameters is important and this is why they
are represented by integer numbers instead of names.

� p : Prot (domain of function prototypes)

I p� : Prot (empty prototype)

I � [�] : Prot �N! E(Typedat �Mode)

(lookup function)

I � l � : (Typedat �Mode)�Prot! E(Prot)

(prepend parameter)

I + � : Prot! E(Typedat �Mode�Prot)

(extract 1st parameter)

At the second step, for each non-terminal symbol
involved in the static semantics, asemantic function
must be defined. This function represents the static
meaning of phrases generated by this non-terminal
symbol and its definition is given by induction on the

set of production rules. For the case ofL, the complete
set of static semantic functions is defined in Fig. 4.
There is one equation for each production rule. The
type of each function reflects the static meaning of
the corresponding program phrase, e.g. the meaning of
declarations is typically a function from some initial
type environment to a compile-time computation of an
updated type environment, which contains the newly
declared identifiers.

In some cases, program phrases may have more than
one static meaning, depending on their use. For ex-
ample, formal parameters determine the prototype of a
defined function, but also modified the static type en-
vironment when this function is called. The multiple
meanings are distinguished by prefixed calligraphic
letters. Furthermore, most programming languages
support recursively defined types, requiring the use of
the least fixed point operator in their static semantics.

6 Typing semantics
The primary aim of typing semantics is the association
of program phrases with phrase types. The relation be-
tween program phrases and phrase types is formally
established by means oftyping judgements. The most
common form of judgement is the main typing relation
e ` phrase : �. However, in specifying the typing se-
mantics of a complex programming language, addi-
tional forms of typing judgements may be necessary.
Fig. 5 shows the forms of judgements that are needed
for the typing semantics ofL.

Fig. 5: Typing semantics, judgements.

Judgement Description

e ` phrase : � The givenphrasecan be attributed phrase
type� in type environmente.

e ` I / � IdentifierI is associated with the denotable
type� in type environmente.

v := z The compile-time computationz : E(D)

produces the (non-error) valuev : D.

Typing rulesare inference rules whose premises and
conclusion are typing judgements. The proof of a typ-
ing judgement using a set of typing rules is calledtyp-
ing derivation. A typing derivation combines a num-
ber of typing rules in a tree-like structure, in such a
way that the conclusion of one rule becomes a premise
of some other rule.

A large subset of the rules that define the typing se-
mantics ofL is given in Fig. 6. Rules I1 and I2 specify
conversions that take place implicitly in the evaluation
of expressions, stating that l-values are implicitly con-
verted to the values stored in the designated objects.
Such conversions are calledimplicit coercions.

7 Dynamic semantics
Dynamic semantics specifies the execution behaviour
of well-typed programs. As a useful side-effect, run-
time errors and other sources of undefined behaviour
are detected. As in the case of static semantics, dy-
namic semantics is specified in two steps. The first step
aims at the definition of dynamic semantic domains,
whereas the second aims at the definition of dynamic
semantic functions.

The definition of dynamic semantic domains begins

with a mapping from static types, i.e. elements of static
type domains, to dynamic domains representing the
values of these types. In the case ofL, this mapping is
done below.

� [[integer]]dat = N

� [[�]]ret = [[�]]dat

� [[nothing]]ret = U

� [[data [�]]]den = Obj

� [[ref [�]]]den = Obj

� [[func [r; p]]]den = [[p]]Prot ! G([[r]]ret)

� [[�]]exp = [[�]]dat

� [[boolean]]exp = T

A few additional domains are necessary, such as the
domainObj of object descriptors, i.e. object locations
in memory,S of program states and the domainC of
program continuations. Complete definitions are omit-
ted for brevity.

� o : Obj (domain of object descriptors)

� s : S (domain of program states)

I s� : S (initial program state)

I write : Obj! N! S! S

I read : Obj! S! N

� A (domain of program answers)

� C = S! A (domain of continuations)

I errorC : C

The domain ordering relation in dynamic seman-
tic domains is usually very important. Bottom ele-
ments can model non-termination and top elements,
if they exist, can model the occurrence of run-time
errors. Intermediate values represent results of com-
putations which produce at least some non-erroneous
results. Non-termination and errors must be appropri-
ately propagated by various operations of the dynamic
domains and by monad operations.

The dynamic semantics of programming languages
can be greatly simplified by proper use of monads and
monad transformers. A monad must be defined for
each kind of computation that is inherent in the given
programming language. In the case ofL, there are two
kinds of computations that may be expressed by mon-
ads, in addition to monadE representing compile-time
(i.e. constant) computations.Expression computations
are represented by monadG, the standard continuation
monad; they may affect the program state, i.e. read and

Fig. 6: Typing semantics, rules.

Declarations

e := fjbodyjg e�
e ` body : body [nothing]

` body : prog
(B1)

e ` declaration-list : decl e0 := fjdeclaration-listjg e
e0 ` statement-list: stmt [r]

e ` declaration-list statement-list: body [r]
(B2)

e ` var I as data-type : decl
(D3)

e ` formal-parameter-list: prot [p] r := fjreturn-typejg
e0 := Ffjformal-parameter-listjg (" e) e0 ` body : body [r]

e ` fun I (formal-parameter-list)
as return-type bodyend : decl

(D4)

� := fjdata-typejg

e ` I as data-typebyval : par [�; byval]
(P3)

� := fjdata-typejg

e ` I as data-typebyref : par [�; byref]
(P4)

Statements

e ` � : stmt [r]
(S1)

e ` statement: stmt [r] e ` statement-list: stmt [r]

e ` statement statement-list: stmt [r]
(S2)

e ` skip : stmt [r]
(S3)

e ` I : obj [func [nothing; p]] e ` expression-list: arg [p]

e ` call I (expression-list) : stmt [r]
(S9)

e ` I : obj [data [�]] e ` expression: exp [�]

e ` I := expression: stmt [r]
(S4)

e ` I : obj [ref [�]] e ` expression: exp [�]

e ` I := expression: stmt [r]
(S5)

e ` statement-list: stmt [r]

e ` begin statement-listend : stmt [r]
(S6)

e ` return : stmt [nothing]
(S10)

e ` condition : exp [boolean]

e ` statement: stmt [r]

e ` while conditiondo statement: stmt [r]
(S7)

e ` expression: exp [�]

e ` return expression: stmt [�]
(S11)

e ` condition : exp [boolean]

e ` statement1 : stmt [r] e ` statement2 : stmt [r]

e ` if conditionthen statement1 else statement2 : stmt [r]
(S8)

Expressions

e ` n : exp [integer]
(E1)

e ` I / �

e ` I : obj [�]
(E2)

e ` expression: obj [data [�]]

e ` expression: exp [�]
(I1)

e ` expression: obj [ref [�]]

e ` expression: exp [�]
(I2)

e ` I : obj [func [�; p]] e ` expression-list: arg [p]

e ` call I (expression-list) : exp [�]
(E3)

e ` expression: exp [integer]
e ` un-op expression: exp [integer]

(E4)

e ` expression1 : exp [integer]
e ` expression2 : exp [integer]

e ` expression1 bin-op expression2 : exp [integer]
(E5)

e ` � : arg [p�]
(A1)

e ` expression: exp [�]

e ` expression-list: arg [p0] p := h�; byvali l p0

e ` expression expression-list: arg [p]
(A2)

e ` expression: obj [data [�]]

e ` expression-list: arg [p0]

p := h�; byrefi l p0

e ` expression expression-list: arg [p]
(A3)

e ` expression: obj [ref [�]]

e ` expression-list: arg [p0]

p := h�; byrefi l p0

e ` expression expression-list: arg [p]
(A4)

alter the values of variables. However, they may not
terminate the execution of the program or the current
function.

� G(D) = (D ! C) ! C

I unitG : D ! G(D)

unitG = � v: ��: � v

I � �G � : G(A)� (A! G(B)) ! G(B)

m �G f = ��: m(�v: f v �)

I errorG : G(D)

errorG = ��: errorC
I liftE!G : E(D) ! G(D)

liftE!G = �m: casem of

inl v) unitG v
inr u) errorG

I setState : (S! S) ! G(S)

setState = � f: � �: � s: � s (f s)

I getState : G(S)

getState = setState id

On the other hand,statementcomputations are repre-
sented by monadKr; they may affect the program state
but may also terminate the program or the current func-
tion by returning a result of typer.

� Kr(D) = ([[r]]ret ! C) ! G(D)

I unitK : D ! Kr(D)

unitK = � v: � �r: unitG v

I � �K � : Kr(A)� (A! Kr(B)) ! Kr(B)

m �K f = ��r: m �r �G (� v: f v �r)

I errorK : Kr(D)

errorK = ��r: errorG
I liftG!K : G(D) ! Kr(D)

liftG!K = �m: ��r: m

I funbodyr : Kr(U) ! G([[r]]ret)

funbodynothing = �k: � �: k � �

funbody� = � k: � �: k � (�u: errorC)

I resultr : [[r]]ret ! Kr(U)

resultr = �d: � �r: � �: �r d

The relation between the three monads and the conver-
sion functions are shown in Fig. 7.

Dynamic environments are a special case of dy-
namic semantic domains. They correspond directly to
static environments and associate static program ele-
ments, such as identifiers or formal parameters, with
the dynamic entities that these elements represent dur-
ing the program’s execution. In the case ofL, two
kinds of dynamic environments are needed: the do-
main [[e]]Env of dynamic type environments corre-
sponding to the static type environmente, and the do-
main [[p]]Prot of dynamic function prototypes corre-
sponding to the static function prototypep. They are

Fig. 7: Relations between the defined monads.

G

Kr

lift G!K funbodyr

lift E!G

E

both defined below as abstract data types. In brief,
the first associates variables with objects in memory,
whereas the second associates formal with actual pa-
rameters.1

� � : [[e]]Env (domain of dynamic type environments)

� [[e + I]] =

(
[[�]]den ; if e[I] = unitE �

U ; if e[I] = errorE

I �� : [[e�]]Env (empty dynamic environment)

I � " � : e : Envn [[# e]]Env ! [[e]]Env

I lookup : e : Env� [[e]]Env ! Ide! E([[e + I]])

I create : e : Env� [[e]]Env ! Ide! E([[e]]Env)

I assign : e : Env� [[e]]Env !
I : Ide� [[e + I]] ! E([[e]]Env)

� [[p]]Prot (domain of dynamic function prototypes)

� [[p + i]] =

8><
>:

[[�]]dat ; if p[i] = unitE h�; byvali

[[ref [�]]]den ; if p[i] = unitE h�; byref i

U ; if p[i] = errorE
� [[�; byval]]Par = [[�]]dat
� [[�; byref]]Par = Obj

I noargs : [[p�]]Prot

I prependp;�;m;p0 : [[�;m]]Par ! [[p0]]Prot ! E([[p]]Prot)

I splitp;�;m;p0 : [[p]]Prot ! E([[�;m]]Par � [[p0]]Prot)

During the second step in the definition of dynamic
semantics, dynamic functions and equations must be
defined. In general, a dynamic semantic function maps
well-typed program phrases to dynamic semantic do-
mains. A program phrase is well-typed if there exists a
typing derivation for it, and the conclusion of this typ-
ing derivation specifies the phrase type. At least one

1In the notation that we use, the domainsx : A � B(x) and
x : AnB(x) are respectively dependent function and dependent
product domains.

Fig. 8: Dynamic semantics forL, functions and equations for declarations.

I [[prog]] : Knothing(U)

(B1) [[body]]prog = liftE!K (fjbodyjg e�) � (�e: [[body]]body [r] e (e " ��))

I [[body [r]]] : e : Env� [[e]]Env ! Kr(U)

(B2) [[declaration-list statement-list]]body [r] = �e: � �:

lift E!K (fjdeclaration-listjg e) � (� e0:

lift E!K (mclo ([[declaration-list]]decl e
0 �) (F [[declaration-list]]decl e

0)) � (��0:

[[statement-list]]stmt [r] e
0 �0))

I [[decl]] : e : Env� [[e]]Env ! E([[e]]Env)

(D3) [[var I as data-type]]decl = �e: � �: create e � I

(D4) [[fun I (formal-parameter-list) as return-type bodyend]]decl = � e: unit

I F [[decl]] : e : Env� [[e]]Env ! E([[e]]Env)

(D3) F [[var I as data-type]]decl = � e: unit
(D4) F [[fun I (formal-parameter-list) as return-type bodyend]]decl = � e: � �:

Ffjformal-parameter-listjg (" e) � (�e0: fjreturn-typejg � (�r:

let f = � dp: [[formal-parameter-list]]prot [p] dp e
0
(e0 " �) � (� �0: funbodyr ([[body]]body [r] e

0 �0))

in assign e � I f))

I [[prot [p]]] : [[p]]Prot ! e : Env� [[e]]Env ! G([[e]]Env)

I [[par [�;m]]] : [[�;m]]Par ! e : Env� [[e]]Env ! G([[e]]Env)

(P3) [[I as data-typebyval]]par [�;byval] = � da: � e: � �:

lift E!G (create e � I) � (��0:

lift E!G (lookup e �0 I) � (�o:

setState (write o da) � (� s:

unit �0)))

(P4) [[I as data-typebyref]]par [�;byref] = �da: � e: � �:

lift E!G (assign e � I da)

function is required for each phrase type, representing
the dynamic meaning of phrases that can be attributed
this type. More than one functions may be necessary
if there are more than one possible meanings for a pro-
gram phrase. Subsequently, one equation is required
for each typing rule whose conclusion is a main typing
relation. A large subset of the dynamic semantic func-
tions and equations forL, corresponding to the typing
rules given in Fig. 6 is given in Fig. 8, 9 and 10.

8 Implementation
Easily produced and verifiably correct implementa-
tions, directly based on formal definitions, are valu-
able tools for the semantic analysis, design and evalu-
ation of programming languages. Although not in the
spirit of operational semantics, a denotational descrip-
tion of a programming language defines directly an ex-
ecution model in the form of the abstract interpreter
discussed in Section 2. This execution model can be
implemented by translating the denotational semantics

to a program, written in some target language.

Several languages have been suggested and used for
this purpose, with more or less success. It seems that
typed functional programming languages, such as ML
or Haskell, are more suitable for this purpose. The
latter is a better choice for implementing the seman-
tics obtained by the proposed methodology, mainly be-
cause of its richer type system, more flexible syntax,
elegant support for monads and also because lazy eval-
uation avoids a number of non-termination problems.

A direct implementation of the definition ofL us-
ing Haskell as the target language consists of approx-
imately 700 lines of code: 15 lines were needed for
the implementation of the abstract syntax, 120 for the
static semantics, 200 for the typing semantics and 275
for the dynamic semantics. The translation from the
source programs inL to the abstract syntax was im-
plemented as 700 additional lines of Flex/Bison code.2

2For the complete implementation the reader is referred to [9].

Fig. 9: Dynamic semantics forL, functions and equations for statements.

I [[stmt [r]]] : e : Env� [[e]]Env ! Kr(U)

(S3) [[skip]]stmt [r] = � e: � �: unit u
(S4, 5) [[I := expression]]stmt [r] = � e: � �: [[I]]obj [�] e � � (� o:

liftG!K ([[expression]]exp [�] e �) � (� v: liftG!K (setState (write o v)) � (� s: unit u)))

(S6) [[begin statement-listend]]stmt [r] = [[statement-list]]stmt [r]

(S7) [[if conditionthen statement1 else statement2]]stmt [r] = �e: � �: liftG!K([[condition]]exp [boolean] e �) � (� v:

if v then [[statement1]]exp [stmt [r]] e � else [[statement2]]exp [stmt [r]] e �)

(S8) [[while conditiondo statement]]stmt [r] = �e: � �: mfix (� k: liftG!K([[condition]]exp [boolean] e �) � (� v:

if v then [[statement]]exp [stmt [r]] e � � (�u: k) else unit u))

(S9) [[call I (expression-list)]]stmt [r] = � e: � �: [[I]]obj [func [nothing;p]] e � � (�f:

liftG!K ([[expression-list]]arg [p] e �) � (� dp: liftG!K (f dp)))

(S10) [[return]]stmt [r] = � e: � �: result u
(S11) [[return expression]]stmt [r] = � e: � �: liftG!K ([[expression]]exp [�] e �) � (� v: result v)

Fig. 10: Dynamic semantics forL, functions and equations for expressions.

I [[exp [v]]] : e : Env� [[e]]Env ! G([[v]]exp)

I [[obj [�]]] : e : Env� [[e]]Env ! G([[�]]den)

(E1) [[n]]exp [integer] = �e: � �: unit N [[n]]
(E2) [[I]]obj [�] = � e: � �: lift E!G (lookup e � I)

(E3) [[call I (expression-list)]]exp [�] = � e: � �: [[I]]obj [func [�;r]] e � � (�f:

[[expression-list]]arg [p] e � � (�dp: f dp))

(E4) [[un-op expression]]exp [integer] = �e: � �: [[expression]]exp [integer] e � � (�n: liftE!G (UO[[un-op]] n))
(E5) [[expression1 bin-op expression2]]exp [integer] = �e: � �: [[expression1]]exp [integer] e � � (�n1:

[[expression2]]exp [integer] e � � (�n2: liftE!G (BO[[bin-op]] hn1; n2i)))

(I1, 2) [[expression]]exp [�] = � e: � �: [[expression]]obj [data [�]] e � � (��: getState � (�s: unit (read s o)))

I [[arg [p]]] : e : Env� [[e]]Env ! G([[p]]Prot)

(A1) [[�]]arg [p�] = �e: � �: unit noargs
(A2) [[expression expression-list]]arg [p] = �e: � �: liftE!G (+ p) � (� h�; byval ; p0i:

[[expression]]exp [�] e � � (�d: [[expression-list]]arg [p0] e � � (�dp0 : prependp;�;byval;p0 d dp0)))

(A3, 4) [[expression expression-list]]arg [p] = �e: � �: liftE!G (+ p) � (� h�; byref ; p0i:
[[expression]]obj [�] e � � (�d: [[expression-list]]arg [p0] e � � (� dp0 : prependp;�;byref;p0 d dp0)))

I UO[[un-op]] : N! E(N)

I BO[[bin-op]] : N�N! E(N)

9 Evaluation

The proposed methodology has been used for the for-
mal definition of the ANSI C programming language,
as described in [4]. The definition was based on the
standard for the language and is as complete and ac-
curate as possible. The definition of abstract syntax
consists of 39 production rules, whereas the definition
of static semantics involves 17 domains, one monad,
33 semantic functions and 93 semantic equations. Fur-
thermore, approximately 200 typing rules are used for
the typing semantics. The dynamic semantics is the
most complicated part, because of C’s inherent com-
plexity: 41 domains are used, 6 monads, one monad

transformer, 45 semantic functions and more than 250
dynamic equations.

A structured implementation of the semantics of
ANSI C in Haskell has also been developed. It consists
of approximately 15,000 lines of Haskell code, which
are distributed roughly as follows: 3,000 lines for the
static semantics, 3,000 lines for the typing semantics,
5,000 lines for the dynamic semantics, 3,000 lines for
parsing and pretty-printing and 1,000 more lines of
general code and code related to testing. The imple-
mentation was used for the evaluation of the complete-
ness and accuracy of the developed semantics, with
very positive results.

10 Conclusion and future work
In this paper, we have presented a methodology for the
formal definition of programming languages, follow-
ing the denotational approach and using monads to im-
prove modularity and elegance of notation. The main
contribution of the proposed methodology are the three
distinct consecutive phases that it proposes, for the def-
inition of the semantics. The obtained programming
language definitions are well structured and modular
and can be implemented in the form of abstract inter-
preters in a relatively straightforward way.

Our research in the near future will focus on the
process of evaluating and improving the proposed
methodology, by applying it to programming lan-
guages of different nature and complexity. A sec-
ondary aim is to study the practical applications that
formal definitions of programming languages may
have in the software industry, especially in tools for
program transformation, debugging and understand-
ing, and how our methodology can be enriched to sup-
port these applications.

References:

[1] R. D. Tennent, “The denotational semantics of
programming languages,”Communications of the
ACM, vol. 19, pp. 437–453, Aug. 1976.

[2] P. D. Mosses, “Denotational semantics,” inHand-
book of Theoretical Computer Science(J. van
Leeuwen, ed.), vol. B, ch. 11, pp. 577–631, El-
sevier Science Publishers B.V., 1990.

[3] R. D. Tennent,Semantics of Programming Lan-
guages. Englewood Cliffs, NJ: Prentice Hall,
1991.

[4] N. S. Papaspyrou,A Formal Semantics for the C
Programming Language. PhD thesis, National
Technical University of Athens, Software Engi-
neering Laboratory, Feb. 1998.

[5] E. Moggi, “Computational lambda calculus and
monads,” inIEEE Symposium on Logic in Com-
puter Science, pp. 14–23, 1989.

[6] E. Moggi, “An abstract view of programming lan-
guages,” Tech. Rep. ECS-LFCS-90-113, Univer-
sity of Edinburgh, Laboratory for Foundations of
Computer Science, 1990.

[7] P. Wadler, “The essence of functional program-
ming,” in Proceedings of the 19th Annual Sym-
posium on Principles of Programming Languages
(POPL’92), Jan. 1992.

[8] S. Liang, P. Hudak, and M. Jones, “Monad trans-
formers and modular interpreters,” inConference
Record of the 22nd ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages
(POPL’95), (San Francisco, CA), Jan. 1995.

[9] N. Papaspyrou, “A methodology for the defini-
tion of programming languages,” Tech. Rep. CSD-
SW-TR-1-99, National Technical University of
Athens, Software Engineering Laboratory, Apr.
1999.

