
Expected Behavior of Bisection Based Methods for Counting and
Computing the Roots of a Function

D.J. KAVVADIAS, F.S. MAKRI, M.N. VRAHATIS

Department of Mathematics, University of Patras,

GR-261.10 Patras, GREECE, and

University of Patras Arti�cial Intelligence Research Center{UPAIRC,

University of Patras, GR-261.10 Patras, GREECE.

URL:

Abstract: - We present a new bisection based method for counting and computing roots of a function in
a given interval. Our method is focused on very large problems, i.e. instances with number of roots of
the order of the hundreds. The method draws its power from the fact that the roots are expected to be
many, in order to discover a large proportion of them very e�ciently. Its main advantage, apart from
its e�ciency, is its simplicity which makes it a suitable preprocessing step to more robust and expensive
methods in order to reduce the size of the problem. The algorithm is accompanied by a probabilistic
analysis of its behavior, which shows that a simple existence criterion like the Bolzano's rule, can be a
powerful tool in the root �nding process.

Keywords and phrases: Expected behavior, bisection based methods, counting and computing the roots
of a function, very large problems.

1 Introduction
In this paper we present a bisection based method

for the problem of counting and computing roots

of a single equation:

f(x) = 0; (1)

where f : [a; b]� IR ! IR is continuous in the given

interval [a; b].

The method is focused on very large instances

of the problem (with roots of the order of the hun-

dreds or more). It is well known that problems of

such size emerge in several �elds of mathematics

and engineering. On the other hand, it is also well

known that solving such instances is a formidable

task and in some sense the true testing �eld for any

root �nding method.

The proposed method takes advantage of the

abundance of roots, in an attempt to very cheaply

(in terms of computing resources) locate a large

number of roots, thus reducing the size of the prob-

lem. The algorithm almost blindly searches for

roots by employing only the Bolzano's existence

criterion (see next section). It turns out however

that even this simple rule is su�cient to guide the

algorithm in discovering a large proportion of the

total set of roots. Thus with very few function eval-

uations, the problem can be considerably reduced.

But this is already more than it could be expected

from such a simple method: while new roots are

being discovered, the cost gets increasingly high to

a point where it becomes unpro�table to continue.

Then the unsearched parts of the interval must be

searched by a di�erent method. Thus the algorithm

must be viewed as a preprocessing step of a more

robust and expensive method. Its main advantage

is its simplicity which follows precisely from the ex-

pectation that with high probability even a simple

search for a root will prove successful due to the

abundance of roots.

In this paper we also study analytically the ex-

pected behavior of the method and give theoretical

justi�cation of its good performance.

We would like to point out here that recently,

there has been a surge of interest concerning the ex-

pected behavior of numerical algorithms [1, 2, 3, 14]

and [5, 6, 8, 19]. The traditional approach in evalu-

ating a numerical method, usually involves a num-

ber of experiments on a number of inputs, either

of individual interest or randomly constructed by

altering certain parameters of the problem. Very

few numerical methods exist that are accompanied



by a robust analysis of their expected behavior.

The analysis presented here follows the frame-

work of [8].

A by-product of the algorithm is an estimation

of the number of roots in an interval. This problem

is interesting on its own, either in order to a priori

evaluate the size of a problem or as in this case, to

establish a stopping criterion for the method.

In the next section we give some background

material on the bisection method, as was modi�ed

in [15, 16]. In section 3 we briey discuss the main

steps of the algorithm in order to present its theo-

retical analysis which follows in section 4. Then in

section 5 we give a more detailed description of the

method which also refers to the theoretical analy-

sis. We end in section 6 with some conclusions and

future work.

2 Background material
A simple oracle on the existence of a solution of

f(x) = 0 in some interval (a; b) where the function

f is continuous in [a; b] is the following criterion:

f(a) f(b) < 0; or sgn f(a) sgn f(b) = �1;

where sgn is the well known three valued sign func-

tion. This criterion is known as Bolzano's existence

criterion (for a generalization of this criterion to

higher dimensions see [17]). Note that this oracle

may introduce a one{sided error, i.e. a positive re-

sponse means that at least one root exists but a

negative response may correspond to the existence

of an even number of simple roots.

The simplicity of this criterion is what makes it

attractive even though it has the above disadvan-

tage. Thus it will be our main tool in what follows.

More elaborate relations can give more information

on the existence of roots. For example, interval

analysis uses the range of the function to decide on

the existence or not of a root (see e.g. [9, 10, 11]).

An even more complicated oracle which gives the

exact number of roots N r is based on topological

degree theory using Kronecker's integral on a Pi-

card's extension [4, 12]. This oracle was used in [8]

as part of the �rst phase of an algorithm for the

isolation of all simple roots of a function f(x) in an

interval (a; b).

The algorithm of [8] uses in its second phase, bi-

section in order to compute the roots. Speci�cally,

it uses the following simpli�ed version described in

[15]:

xi+1 = xi + c sgnf(xi)=2
i+1; i = 0; 1; : : : ; (2)

where c = sgnf(a) (b� a): The sequence (2) con-

verges to a root r 2 (a; b) if for some xi;

sgnf(x0) sgnf(xi) = �1; for i = 1; 2; : : : :

Furthermore, the number of iterations �, which are

required in obtaining an approximate root r� such

that jr� r�j � " for some " 2 (0; 1) is given by:

� = dlog(b� a) "�1e; (3)

where the logarithm in the above relation and also

in the rest of the paper is taken with base two.

Instead of the iterative formula (2) we can also use

the following one:

xi+1 = xi � c sgnf(xi)=2
i+1; i = 0; 1; : : : ; (4)

where c = sgnf(b) (b� a):

The reason for choosing the bisection method

is that it always converges within the given inter-

val (a; b) and it is a globally convergence method.

Moreover it has a great advantage since it is opti-

mal, i.e. it possesses asymptotically the best pos-

sible rate of convergence [13]. Also, using the rela-

tion (3) it is easy to have beforehand the number

of iterations that are required for the attainment

of an approximate root to a predetermined accu-

racy. Finally, it requires only the algebraic signs of

the function values to be computed, as it is evident

from (2) or (4), thus it can be applied to problems

with imprecise function values. As a consequence

for problems where the function value follows as

a result of an in�nite series (e.g. Bessel or Airy

functions) it can be shown [18, 20] that the sign

stabilizes after a relatively small number of terms

of the series and the calculations can be speed up

considerably.

3 An informal description
Here is an informal description of the algorithm.

The algorithm begins by subdividing the interval

into a number of equal subintervals (it will become

clear that it is convenient for the number of subin-

tervals to be a power of two and its speci�c value

will be �xed later). The main body of the algo-

rithm consists of three steps:

Step 1. We compute the sign of the function

at the endpoints of the subintervals. Depending on

the number of roots in each subinterval, its end-

points will have the same signs (in a case of even

roots) or opposite signs (in a case of odd roots).

We therefore have certainty on the existence of at



least one root in an interval with opposite signs, so

we proceed in discovering a root in those intervals

using ordinary bisection.

Step 2. Notice that at this point all intervals

in our pattern of subdivisions have the same sign

at their endpoints. Depending now on a stopping

criterion, we decide whether it is worthwhile con-

tinuing the algorithm (in terms of the cost of dis-

covering new roots).

Step 3. If we decide that it is, we subdivide

the class of subintervals of greatest length into two

halves and go back to step 1. Otherwise we output

the discovered roots and halt.

4 Work estimations
Our stopping criterion is based on the expected,

per root, number of function evaluations that the

roots that will be discovered in the next iteration,

will require. The probability space on which we

make our calculations and the whole framework can

be found in [8]. We briey mention here that we

view each root as a random point in the interval

(a; b). We also make the assumption that the roots

are uniformly distributed, i.e. intervals of equal

length have equal probability of containing a root.

Central to our decision turns out to be an estima-

tion of the total number of roots in the original

interval. This is of no surprise: if there is an abun-

dance of roots in the interval and we have only

discovered a few, then it is natural to expect that

with high probability the next iteration will reveal

a lot of roots. The estimation on the total number

of roots is revised after each iteration, when new

roots have been discovered. Hence at the beginning

of the algorithm there is only a rough estimation

on the number of roots, but as we proceed the ad-

ditional information allows us to be more accurate

in our prediction. For our estimation method we

shall need the following two propositions:

Proposition 1 Assume that the total number of

roots in the interval is N . Then the probability podd
that a subinterval of length ` contains an odd num-

ber of roots is given by:

podd =
1� (1� 2`)N

2
: (5)

Proof: See [7].

Throughout this paper we assume without loss

of generality that the given interval is normalized,

i.e. its length is 1. Consequently the length ` of a

subinterval gives also the probability of a root to

lie within this subinterval. Notice that for a num-

ber of roots N of the order of twenty or so, podd
is very close to 1/2 for small enough `. Therefore,

roughly half of the intervals provably have at least

one root. This is natural, since when the number

of roots is large, the intervals with odd and the

intervals with even roots are about the same. In

such a case, after computing the roots, it is worth-

while continuing by subdividing the largest inter-

vals. When however we have discovered a number

of roots close to the total, the number of inter-

vals with zero roots begin to increase, and this is

precisely what we take advantage of to decide if

it is time to stop. In order however to quantify

the above, we use a known con�dence interval for

the probability p of the binomial distribution. We

may view the family of subintervals of interest as

random variables which follow, for the property of

having or not odd roots, the binomial distribution

with probability given by (5).

Proposition 2 Assume that at a certain point of

subdivision we have m subintervals of largest size,

out of which we have observed k subintervals with

opposite signs at their endpoints. Then with prob-

ability at least 1� �, the probability of having odd

roots podd is between:

plower � podd � pupper;

where:

plower =
k � z�=2

q
k(m�k)

m

m
;

and

pupper =
k + z�=2

q
k(m�k)

m

m
:

Proof: See [7].

In the above formulas z�=2 is a constant which

can be determined from:

Prob(�z�=2 � Z � z�=2) = 1� �;

where Z is a random variable following the stan-

dard normal distribution. For example when � =

0:05 then z�=2 = 1:96.

We use the above con�dence interval to esti-

mate podd and then using (5) to estimate N . This

is done by computing two values for N , call them

Nlower and Nupper. The �rst is computed by solving

the equation (with respect to N):

pupper =
1� (1� 2`)N

2
; (6)



and the second by solving the equation:

plower =
1� (1� 2`)N

2
: (7)

Notice that in some cases Nupper and even Nlower

can be in�nite. This will happen when insu�cient

data are available for determining exact values for

the con�dence interval. But for our purposes this

is immaterial: in either of these cases we continue

subdividing the intervals.

When after some iterations, both ends of the

con�dence interval are well de�ned, we choose some

preferable value for N . A good choice seems to be

(Nlower+Nupper)=2. Or, we may decide to be on the

safe side and choose as N to be Nlower. Whichever

our choice might be, we use it to decide whether

it is time to stop. Our criterion is based on the

expected work (in function evaluations) that the

next root that will be discovered, will require.

Assume that at a certain point our estimation

for the total number of roots is N . Moreover, the

length of the greatest subintervals is ` and their

number is m. (Notice that if this happens at the

i-th iteration, ` = 2�i).

Now, the work that the algorithm will do at the

next iteration consists of (a) them function evalua-

tions at the midpoints of them largest subintervals

and (b) if k sub-subintervals are discovered with

odd number of roots, k log (`��1) function evalua-

tions for discovering a root in these k subintervals.

The total cost therefore of the next iteration is:

m+ k log
`

�
: (8)

Now, since the probability of having k sub-subinter-

vals with odd number of roots is: 
m

k

!
pkodd(1� podd)

m�k ;

we get that the expected cost of the next iteration

is:

Ecost =
mX
k=0

�
m+ k log

`

�

� 
m

k

!
pkodd(1� podd)

m�k:

Since:

mX
k=0

 
m

k

!
pkodd(1� podd)

m�k = 1;

and

mX
k=0

k

 
m

k

!
pkodd(1� podd)

m�k = mpodd;

we get the following:

Ecost = m+mpodd log
`

�
:

Taking into consideration that the expected num-

ber of roots of the next iteration is mpodd we get

that the expected cost per root, E�cost, of the next

iteration is:

E�cost =
1

podd
+ log

`

�
: (9)

The above expected cost constitutes our stopping

criterion. The most natural choice is to stop once

this cost as given by (9) exceeds some prede�ned

threshold cth. The intention is to stop computing

roots using the current method if the cost of dis-

covering new roots becomes very high. But there

are also other approaches to this end: for example

we may choose to end the algorithm once a prede-

�ned \budget" of function evaluations has expired.

Current work involves experiments for evaluating

cth and the di�erent methods for stopping.

5 The algorithm
In this section we give a detailed description of the

algorithm based on the previous discussions.

1. Divide the interval in 32 equal subintervals;

2. Let A be the set of subintervals with opposite

signs and B the set of subintervals with the

same signs at their endpoints;

3. Find one root in each interval in A using bi-

section;

4. Estimate the total number of roots using Re-

lations (6) and (7);

5. If both Nlower and Nupper are �nite compute

the expected cost of new roots using Rela-

tion (9);

6. If the cost is less than the threshold or at

least one of the N is in�nite then divide the

subintervals in B and go to Step 2.

7. If the condition in Step 6 fails then output

the roots and halt.

The initial subdivision in 32 subintervals is forced

by the theory supporting the con�dence interval in

Proposition 2. In order for this interval to hold, m

has to be greater than 30.

The subdivision into intervals which are frac-

tions that are power of two is justi�ed as follows:



Recall that after we identify an interval with oppo-

site signs at its endpoints, we proceed in discover-

ing a root using ordinary bisection (this is Step 3

above). But this has the side-e�ect that these in-

tervals will be subdivided further in the process of

discovering the root. Now if we choose the initial

subintervals to be a power of two, all these subdi-

visions that emerge from bisection, can be used in

the future should the algorithm proceeds to next

iterations and thus some function evaluations can

be saved.

6 Conclusion

We have addressed the problem of computing the

roots of a function in a case where the number of

roots is very large. This is a formidable problem

with many applications in various �elds of science.

It seems however possible to attack the problem

by taking advantage precisely of its size. To this

end we have presented an algorithm that e�ectively

discovers roots using an almost \blind" search up

to a point where the original size of the problem

has been severely reduced. Then, more robust and

expensive methods can be used to completely solve

the problem. We have also given theoretical justi-

�cation of its good performance, based on a prob-

abilistic framework. The main advantages of the

proposed methodology are its simplicity which re-

sults in fairly simple programming and its e�ciency

which increases with the problem size. Current re-

search includes experimental evaluation of a num-

ber of parameters in order to better tune the algo-

rithm.

References

[1] S. Graf, R.D. Mauldin, S.C. Williams, \Ran-

dom homeomorphisms", Adv. Math., vol.60,

1986, pp.239{359.

[2] S. Graf, E. Novak, \The average error of

quadrature formulas for functions of bounded

variation", Rocky Mountain J. Math.

[3] S. Graf, E. Novak, A. Papageorgiou, \Bisec-

tion is not optimal on the average", Numer.

Math., vol.55, 1989, pp.481{491.

[4] B.J. Hoenders, C.H. Slump, \On the calcula-

tion of the exact number of zeros of a set of

equations", Computing vol.30, 1983, pp.137{

147.

[5] D.J. Kavvadias, F.S. Makri, M.N. Vrahatis,

\Locating and computing arbitrarily dis-

tributed zeros and extrema", 4th Hellenic Eu-

ropean Conference on Computer Mathematics

and its Applications, E.A. Lipitakis Ed., 1998,

in press.

[6] D.J. Kavvadias, F.S. Makri, M.N. Vrahatis,

\Locating and computing arbitrarily dis-

tributed zeros", SIAM J. Sci. Comput., in

press.

[7] D.J. Kavvadias, F.S. Makri, M.N. Vrahatis,

\Expected behavior of bisection based meth-

ods for counting and computing the roots of a

function", Division of Computational Mathe-

matics and Informatics, Department of Math-

ematics, University of Patras, Technical Re-

port TR/1999-1, 1999.

[8] D.J. Kavvadias, M.N. Vrahatis, \Locating and

computing all the simple roots and extrema

of a function", SIAM J. Sci. Comput., vol.17,

no.5, 1996, pp.1232{1248.

[9] R.B. Kearfott, \Rigorous Global Search: Con-

tinuous Problems", Kluwer Academic Publish-

ers, Dordrecht, The Netherlands, 1996.

[10] R.B. Kearfott and M. Novoa III, \INTBIS: A

portable interval Newton=bisection package",

ACM Trans. Math. Software, vol.16, 1990,

pp.152{157.

[11] A. Neumaier, \Interval Methods for systems

of equations", Cambridge University Press,

Cambridge, 1990.

[12] E. Picard, \Sur le nombre des racines com-

munes �a plusieurs �equations simultan�ees,

Journ. de Math. Pure et Appl. (4e s�erie), vol.8,

1892, pp.5{24.

[13] K. Sikorski, \Bisection is optimal, Numer.

Math. vol.40, 1982, pp.111{117.

[14] J.F. Traub, G.W. Wasilkowski, H. Wo�zni-

akowski, \Information{based complexity",

Academic Press, New York, 1988.

[15] M.N. Vrahatis, \Solving systems of nonlinear

equations using the nonzero value of the topo-

logical degree", ACM Trans. Math. Softw.,

vol.14, 1988, pp.312{329.

[16] M.N. Vrahatis, \CHABIS: A mathematical

software package for locating and evaluating

roots of systems of nonlinear equations", ACM

Trans. Math. Software, vol.14, 1988, pp.330{

336.

[17] M.N. Vrahatis, \A short proof and a general-

ization of Miranda's existence theorem", Proc.

Amer. Math. Soc., vol.107, 1989, pp.701{703.



[18] M.N. Vrahatis, T.N. Grapsa, O. Ragos, F.A.

Za�ropoulos, \On the localization and compu-

tation of zeros of Bessel functions", Z. angew.

Math. Mech., vol.77, 1997, pp.467{475.

[19] M.N. Vrahatis, D.J. Kavvadias, \Expected be-

havior of bisection based methods for count-

ing and computing all the roots of a function",

Proceedings of the Sixth International Collo-

quium on Di�erential Equations, D. Bainov,

Ed., VSP International Science Publishers,

Zeist, The Netherlands, 1996, pp.353{360.

[20] M.N. Vrahatis, O. Ragos, F.A. Za�ropoulos

and T.N. Grapsa, \Locating and Computing

Zeros of Airy Functions", Z. angew. Math.

Mech., vol.76, 1996, pp.419{422.


