
1 Introduction
The case of robot systems with constrained
kinematics appears to attract increasing interest
during the last years [1]-[12]. It is plausible that
many manipulator operations,  such as the carrying
of a load or working on a surface,  are  modelled as
constrained robot systems. Constrained robot systems
are described by differential and algebraic equations
[4]. The most often met tasks for this robot category
are position control and force control [7]-[9]. Both
tasks are difficult to be satisfied due to the impulsive
characteristics of the constrained robot models. 

In this paper the attention is focused on the case
of manipulators carrying a load (rigid body). The
load is considered to be rigidly gripped by the
manipulator’s end effector. The distribution of mass
of the load is not considered to be significant, thus
only the equations of forces are assumed to govern
the motion of the load. The forces applied to the load
are equal to the forces applied to the gripper and
consequently to the manipulator. The equations of
the manipulator are the well known Euler-Lagrange
equations [13], modified to involve the forces applied
to the end effector by the load. The interaction
between the load and the manipulator is modelled as
a holonomic constraint. It is important to mention
that such a robot configuration (manipulator + load)
can be met in a variety of practical applications such
as to warehouse goods or to manipulate heavy tools
(manufacturing). 

Here, position control is achieved for the model
of the constraint manipulator carrying a load. With

the term position control we mean the placement and
orientation of the load. The feedback law feeds back
the displacements, velocities and accelerations of the
joints together with the position and the velocity of
the load as well as the force applied to the load. The
motion variables of the joints (displacement and
velocity) can easily be measured using sensors
embedded into the joints. The motion variables of the
load (position and orientation) can be computed
solving direct kinematic problem for the end effector
and using measurements of the joint displacements.
Finally, the forces applied to the load are considered
to be measured via force sensors on the gripper. It is
important to mention that torque actuators in the
joints are assumed to follow the respective
commands (voltage signal) in full accuracy. 

Using a P-D (Proportional plus Derivative) state
feedback law the position control problem is proved
to be always satisfied in the sense of command
matching. This way, the trajectory of the load, as
well as some of the joint displacements are proved to
be mathematically equal to the respective external
commands. For stability purposes the requirements
of command matching are relaxed to those of
command following. The latter problem is proved to
be always solvable. 

It is important to mention that the problem of
command matching, via P-D feedback, for general
descriptor nonlinear (NL) systems has been studied
in [14]. Furthermore, it is mentioned that the case of
command matching with simultaneous asymptotic
stability for a robot gripping a load has been studied

Position Control for Constrained Robots

F. N. KOUMBOULIS 

Department of Mechanical and Industrial Eng.
 University of Thessaly

383 34 Pedion Areos, Volos
GREECE

Abstract: - The problem of position control, for robot manipulators constrained to carry a load, is studied.
Using a nonlinear P-D feedback law the design requirements of command matching and command following
are proved to be always satisfied for constrained robots. Particular feedback laws solving the above problems
are determined in the form of analytic expressions of the mechanical characteristics of the manipulator and the
load.

Keywords: - Input-Output Decoupling, Multivariable Control, Robotic Systems, Position Control, Command
Following, Nonlinear Control, PD controllers.          IMACS/IEEE  CSCC'99  Proceedings, Pages:6131-6134

         



in [12], for the special case of linearized models, with
static state linear feedback. 

2 Robot Model
Consider a robot with  links. The dynamics of thek
robot are expressed by the Euler-Lagrange equations.
For the case of robot involving contact forces applied
to the gripper, the robot dynamics are described by
the following NL set of differential equations [13,4] 

    (2.1)M(q)q̈ + R(q,q.)q. + N(q) = $ − JT(q)f
the dynamic equations of the load are 

      (2.2)Mc(p)p̈ + Rc(p,p.)p. + Nc(p) = LT(p)f
The constraints between the load and the manipulator
are expressed by the relation

                        (2.3)�(p) = h(q)
where  is the vector of joint coordinates of theq F gk

robot;  is the vector of coordinates of the loadp F g6

(placement and orientation);   areM F gk, Mc F g6

the positive definite inertia matrices of the robot and
the load, respectively; R(q,q.)q. F gk, Rc(p,p.)p. F g6

are the vectors of Coriolis and centrifugal forces of
the robot and the load, respectively; , N F gk

are the vectors of gravitational forces of theNc F g6

robot and the load, respectively;  is the vector$ F gk

of joint generalized driving forces of the robot;
 is the vector of generalized forces (forces andf F g6

torques) exerted at the end effector of the robot;
 is a function which characterizes theh(�) : gk G g6

forward kinematics of the robot;  denotes the�(p)
function characterizing the coordinate transformation
from the object frame to the robots end effector
frame;  is the manipulatorJ(�) : gk G g6

�gk

Jacobian of the robot defined by

                      (2.5a)J(q) =
�h(q)
�q

 is the Jacobian of the loadL(p) : g6 G g6
�g6

defined by

                       (2.5b)L(p) =
��(p)
�p

The set of the above equations can be grouped into
nonlinear state space form as follows:
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where  is the k-th dimension unity matrix andI k

where  is the rate of change of the joint� = q.

displacement,  is the velocity of the positionv = p
.

variable.  According to (2.6) the state vector is
x(t) =  q(t) p(t) �(t) v(t) f(t) 

�

while the input (command) vector is the vector .$(t)
The commands driving the joint actuator are assumed
to be equal to the generated torques. The model in
(2.6) is clearly a nonlinear singular model [4], [7].
The rank of the coefficient matrix of the derivative of
the state vector is clearly less than the number of its
rows or the number of its columns. 

In order to complete the model it suffices to
determine the output (performance) vector. The
performance vector, let , is chosen  to have y k
entries (equal to the number  of inputs). Since, the
task is position control, the first 6 elements of the
output vector are the elements of the vector . Thep
rest of the output variables, namely the rest (k − 6)
variables, are selected to be elements of the vector ,q
i.e. to be appropriate joint displacements. There is a
selection matrix, let , resulting to the vector  ofJqs qs

selected joint variables  it is obvious that(qs = Jqsq)
the matrix  is of full row rankJqs

                    (2.7)rankJqs = k − 6
Furthermore, it is noted that in order to involve joint
displacements in the performance vector it is
necessary that . In the case where  thek > 6 k = 6
matrix  is considered to be of zero dimension.Jqs

According to the above it is clear that the
manipulator must be redundant, i.e. the number of
joints must be greater than or equal to the number of
elements of the position vector. In concluding, the
output vector is defined to be 
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or equivalently as a map of the state vector 
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In the case where the number of the joints is less

than 6, the elements of the performance vector can be
appropriately selected elements of the vector  (f.e.p
the performance is required to be only the placement
coordinates). Alternatively, there are many
applications where the load is described by less than
6 coordinates (f.e. point mass load). Indeed, if the
load is considered to be of point mass and the
number of manipulator joints is 3 the dimension of



the performance vector is still equal to the number of
joints. 

3 Control Objective
To achieve position control, apply to the system (2.6)
the P-D feedback law

   (3.1)$(t) = a(q,p,�,v, f, f
.
,�.,v.) + b(q,p,�,v, f )*(t)

where  is the vector of external inputs. The*(t) F gk

controller is of P-D type since the first feedback term
 depends not only upon the statea(q,p,�,v, f, f

.
,�.,v.)

vector but also upon the derivatives of the state
vector. It is mentioned that the derivatives of the
forces have not been fed back since it is difficult to
be measured and usually sensitive to be computed.
The design goal is to determine, if there exist,
functions and  such that the performance vector a b y
follows precisely the external command, i.e. 

                             (3.2)y = *

The above problem is known in the literature as the
command matching problem [12], [14]. In order to
have response free of impulses, the restriction of
command matching is relaxed to that of command
following. It is important to guarantee stability
together with the command following. The type of
stability considered here is that of strong stability.
Strong stability requires that for every bounded input
and any initial condition the state of the system
remains bounded. 

It is important to mention that for the treatment
of the problem it has been assumed that the functions

 are precisely known to theM, Mc,R,Rc,N,Nc,J,L
designer, i.e. that the kinematics of the robot have
been computed in details. Furthermore, it is assumed
that the function matrix  is invertible forb F gk�k

every  and . This holds in order to guaranteeq,p,�,v f
the independence of the outputs. 

4 Solvability of Command Matching 
The possibility of achieving command matching, for
the constrained robot system at hand, is examined in
the following theorem. 
Theorem 4.1: The problem of command matching,
for a robot manipulator constrained to grip a load, is
always solvable. 
Proof: Consider the P-D feedback law (3.1) with 

a(q,p,�,v, f, f
.
,�.,v.) = M(q)�. + R(q,�)� +

,  (4.1)+N(q) − J�(q)f − C(q,p,�,v, f ) b(q,p,�,v) = I k

Clearly, the invertibility of  is guaranteed. Applyingb
the feedback law (4.1) to the system (2.6), the
resulting closed loop system is derived to be

    (4.2)

� = q.

v = p
.

�(p) = h(q)
Mc(p)v. + Rc(p,v)v + Nc(p) = LT(p)f

y = *
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According to (4.2) the design requirement has been
satisfied and thus the theorem has been proved.       �

On the basis of the proof of Theorem 4.1, the
following corollary is established. 
Corollary 4.1: A P-D feedback law solving the
command matching problem is 

                   $(t) = M(q)�. + R(q,�)� + N(q) − J�(q)f +
    (4.3)−C(q,p,�,v, f ) + *(t)

 �
It is important to mention that the control law in (4.3)
appears to have similarities to the well known inverse
dynamic control (or torque control) (see f.e.[13]).
However, it appears to have the distinct advantage of
perfect command following independently of the
singular points of the inertia matrix . M(q)

5 Command Following 
As it can readily be observed from the closed loop
system (4.2), the obvious advantages of the feedback
law (4.3) are obscured by the disadvantage of
generating impulses (Dirac signals) for every
discontinuity of the (possibly bounded) external
command. To overcome this characteristic an
additional feedback law is proposed. This way the
external command  is controlled to be*(t)

                   (5.1)*(t) = −Ky.(t) + �w(t)
where is the new external input (command). Thew(t)
feedback law is decoupled, i.e. the feedback matrices
are chosen to be

         (5.2)K =
1,...,k
diag � i , � =

1,...,k
diag � i

where  and where  is a diagonal� i ,� i F g
1,...,k
diag �

matrix of dimension  . Combining (5.1) andk� k
(4.3) the overall feedback law can be computed to be
$(t) = M(q)�. + R(q,�)� + N(q) − J�(q)f +

 (5.3)−C(q,p,�,v, f ) − K
dC(q,p,�,v, f ) 

dt + �w(t)
Applying the feedback law (5.3) to the system (2.6),
or equivalently the feedback law (5.1) to the system
(4.2), the resulting closed loop system is derived to
be

    (5.4)

� = q.
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.
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Mc(p)v. + Rc(p,v)v + Nc(p) = LT(p)f
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From the last equation in (5.4) it is observed that the
performance variables are governed by the equations

 (5.5)y. i(t) + � i
−1yi(t) = � i

−1� iwi(t) ; i = 1,�,k
where  is the i-th element of the performanceyi

vector . According to (5.5) and after appropriatey
choice of , the performance variable  can� i

−1,� i yi(t)
follow sufficiently close the command .  Fromwi(t)
(5.5) it is further observed that for bounded

 the variables  arewi(t) (i = 1, ...,k) p, v, v., qs,q
.
s

impulse free and consequently that  are alsoq,�,v
impulse free. Furthermore, the selected joint
coordinates  as well as the load positionqs

coordinates  are stable.  p
Alternative results guaranteeing stability can

also be found in [16]. 

7 Conclusions
The problem of position control, for robot
manipulators constrained to carry a load, has been
extensively studied. Using a nonlinear P-D feedback
law the design requirements of command matching
and command following have been proved to be
always satisfied for constrained robots (Theorems 4.1
and 5.1, respectively).  Particular feedback laws
solving the above problems have been determined
(Corollary 4.1, 5.1). The controllers are analytic
expressions of the mechanical characteristics of the
manipulator and the load. The extension of the
present results for uncertain mechanical
characteristics of the manipulator is currently under
investigation. 
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