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Abstract - The problem of position control, for robot manipulators constrained to carry a load, is studied.
Using a nonlinear P-D feedback law the design requirements of command matching and command following

are proved to be always satisfied for constrained robots. Particular feedback laws solving the above problem:

are determined in the form of apat expressions of the mechanical characteristics of the manipulator and the
load.
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1 Introduction the term position control we mean the placement and

kinematics appears to attract increasing interes@_e displacement§, velocitie's-and accelerations_ of the
during the last years [412]. It is plausible that JoINts together with the position gnd the velocity of
many manipulator operations, such as the carryin§e load as well as the force applied to the load. The
of a load or working on a surface, are modelled a§0tion variables of the joints (displacement and
constrained robot systems. Constrained robot systen¥§l0cCity) can easily be measured using sensors
are described by differential and algebraic equation§mbedd60! Into the joints. Th_e motion variables of the
[4]. The most often met tasks for this robot category©@d (position and orientation) can be computed
are position control and force control]{B]. Both solvmg_dlrect kinematic problem f(_)r_the _end effector
tasks are difficult to be satisfied due to the impulsive2nd using measurements of the joint displacements.
characteristics of the constrained robot models. ~ Finally, the forces applied to the load are considered
In this paper the attention is focused on the casf® be measured via force sensors on the gripper. It is
of manipulators carrying a load (rigid body). The Important to mention that torque actuators in _the
load is considered to be rigidly gripped by thelOints are assume(_j to _foIIow the respective
manipulator’s end effector. The distribution of masscommands (voltage signal) in full accuracy.
of the load is not considered to be significant, thus ~ USing @ P-D (Proportional plus Derivative) state
only the equations of forces are assumed to goverfgedback law the position control problem is proved
the motion of the load. The forces applied to the load® be alwgs satisfied in the sense of command
are equal to the forces applied to the gripper andnaiching. This way, the trajectory of the load, as
consequently to the manipulator. The equations ofvell @s some of the joint displacements are proved to
the manipulator are the well known EuIer-Lagrangebe mathematically equal to the respective external
equations [1B modified to involve the forces applied commands. For stab_lllty purposes the requirements
to the end effector by the load. The interaction®f command maiching are relaxed to those of
between the load and the manipulator is modelled agommand following. The latter problem is proved to
a holonomic constraint. It is important to mention b€ always solvable. _
that such a robot configuration (manipulator + load) !t iS important to mention that the problem of
can be met in a varietyf practical applications such ¢ommand matching, via P-D feedback, for general

(manufacturing). in [14]. Furthermore, it is mentioned that the case of

Here, position control is achieved for the modelommand matching with simultaneousymgptotic
of the constraint manipulator carrying a load. WithStability for a robot gripping a load has been studied



in [12], for the special case of linearized models, withwhere I, is thek-th dimension unity matrix and

static state linear feedback. where a=q is the rate of change of the joint

displacement,=p is the velocity of the position
2 Robot Model variable. According to (2.6) the state vector is
Consider a robot witlk links. The dynamics of the xt)=Hat) pt) alt) vt) f(t) QT

robot are expressed by the Euler-Lagrange equation

. : While the input (command) vector is the vect
For the case of robot involving contact forces applie but ( ) @

. ; . he commands driving the joint actuator are assumed
to the gripper, the robot dynamics are described b¥o be equal to the generated torques. The model in

the following _l_\IL set gf differential eunations [13,4] (2.6) is clearly a nonlinear singular model [4], [7].
M(@)d+R(a, a)q+N(q) =7 = J'(q)f (2.1) The rank of the coefficient matrix of the derivative of

the dynamic equations of the load are the state vector is clearly less than the number of its
Mc(p)P +Re(p. PP+ Ne(p) = L "(p)f (2.2) rows or the number of its columns.

The constraints between the load and the manipulator |, order to complete the model it suffices to

are expressed by the relation determine the output (performance) vector. The
- 7(p) =h(a) _ (2.3) performance vector, lety , is chosen to hdve

whereq € R* is the vector of joint coordinates of the o irieg (equal to the number of inputs). Since, the
robot; pe R® is the vector Of coordklnates ofﬁthe loadi4sk is position control, the first 6 elements of the
(placement and orientation);M € R, Mc € R®  are output vector are the elements of the vegor . The
the positive definite inertia matrices of the robot andyegt of the output variables, namely the r@st 6)

the load, respectivelyR(g,d)d < R, Re(p.p)PeR®  ariables, are selected to be elements of the vgctor
are the vectors of Coriolis and centrifugal forces of, o g pe appropriate joint displacements. There is a
the robot and the load, respectivelNeR , gejection matrix, lefgs , resulting to the vectar  of

N. € R°are the vectors of gravitational forces of the gg|acted joint variable@s = Jes0) it is obvious that
robot and the load, respectivelys R is the vectoryq matrixJqs is of full row rank

of joint generalized driving forces of the robot; rankqs 0= k- 6 2.7)
6 . . .

f e R> is the vector of generalized forces (forces ang- rthermore, it is noted that in order to involve joint

torques) exerted at the end effector of the robotyispiacements in the performance vector it is
h(-) : R > R® is a function which characterizes the necessary thak>6 . In the case whére6 the
forward kinematics of the robot(p)  denotes themayrix J.. is considered to be of zero dimension.

function characterizing the coordinate transformationzccording to the above it is clear that the

from the Objeth fra(rsne tko the robots end effectoranipulator must be redundant, i.e. the number of
frame; J() :R*->R°xR is the manipulator joints must be greater than or equal to the number of

’

Jacobian of the robot defigﬁd by elements of the position vector. In concluding, the

J) = % (2.5a) output vector is defined to be

. . Op O
L(p) : R® > R®xR® is the Jacobian of the load y=[ P 0 };i—6 (2.8)
defined by ivalentl A f the stat t
_ on(p) or equivalently as a map of the state vector

L(p) = a—p (2.5b) g q B
The set of the above equations can_be grouped into Op 000 16000 (0 P g
nonlinear state space form as follows: y=0, 0503 0000 He =
Ol 0 O 0 [ Oq M 09s 0 OVes m, O

0 OV o
Hols 0 0 o%dgp% of

%0 OM@ O O %Et%a El%: =C(q,p,a,V,f) (2.9)
500 0 MP O gvm In the case where the number of the joints is less
000 O 0O O of m than 6, the elements of the performance vector can be
appropriately selected elements of the veqtor (f.e.
the performance is required to be only the placement
coordinates).  Alternatively, there are many
applications where the load is described by less than
6 coordinates (f.e. point mass load). Indeed, if the
load is considered to be of point mass and the
number of manipulator joints is 3 the dimension of

(2.6)
—Rc(p, V)V + Nc(p) - L™ (p)f

0 OO
] il
0 -R(0, a)a +-N(q) + I (q)f O+ O I«
| 0 O
0 O O
0 h(q) - =(p) 00

O OOg0oO O



the performance vector is still equal to the number of a=(q O
joints. v=p E
. n(p) =h(q) 0 (4.2
3 Control Objective Me(p)V + Re(p, V)V +Ne(p) = LT(p)f  H
To achieve position control, apply to the system (2.6) y=w 0

the P-D feedback law According to (4.2) the design requirement has been

«(®) =a(a. p, a,v_, f.1,4,v) +b(q, p,a,v,f)w(t) (3.1) satisfied and thus the theorem has been proved
wherem(t) e R is the vector of external inputs. The On the basis of the proof of Theorem 4.1, the
controller is of P-D type since the first feedback termfollowing corollary is established. ’

a(q,p,a,v.f.f,0,V) depends not only upon the state corgllary 4.1 A P-D feedback law solving the
vector but also upon the derivatives of the statgommand matching problem is

vector. It is mentioned that the derivatives of thef(t)=M(q)a’+R(q,a)a+N(q)— J(Q)f +

forces have not been fed back since it is difficult to —C(q,p, o, v, f) +o(t) (4.3)
be measured and usually sensitive to be computed. -

The design goal 'Sht% dert]ermlne, If there exist,i s important to mention that the control law in (4.3)
functionsa ancb  such that the performance veglor ,nnears to have similarities to the well kndvwerse
follows precisely the external command, i.e. dynamic control(or torque contro) (see f.e.[13]).

Y=o ] (3.2) However, it appears to have the distinct advantage of
The above problem is known in the literature as theperfect command following independently of the

command matching problem [12], [14]. In order to singular points of the inertia matriki(q)
have response free of impulses, the restriction of

command matching is relaxed to that of command5 Command Following

following. It is important to guarantee stabilit _ :
g P g y As it can readily be observed from the closed loop

together with the command following. The type of )
stability considered here is that of strong stability. SYStem (4.2), the obvious advantages of the feedback

Strong stability requires that for every bounded input@V (4.3) are obscured by the disadvantage of

and any initial condition the state of the Systemg_eneraﬁng_ impulses (D‘“'?‘C signals) for —every
remains bounded. discontinuity of the (possibly bounded) external

It is important to mention that for the treatment c0mmand. To overcome this characteristic an

of the problem it has been assumed that the functior@dditional feedback law is proposed. This way the

M, Mc, R Re,N,N¢,J,L are precisely known to the external command(t) is controlled to be
designer, i.e. that the kinematics of the robot have (t) = —Ky(t) + I'w(Y) (5.1)

been computed in details. Furthermore, it is assumefyn€rew(t) is the new external input (command). The
that the function matrixb e R*< is invertible for feedback law is decoupled, i.e. the feedback matrices

every, p,a,v andf . This holds in order to guarantee®® chosen to Ee_ i

the independence of the outputs. K —q,.?}(g{Ki} , T —?}_ﬁ}g{yi} (5.2)

where ki, € R and wheraliag{-} is a diagonal
1K

4 SOIVa.b.II.Ity of Cpmma”d MatChmg. matrix of dimension kxk . Combining (5.1) and
The possibility of achieving command matching, for

the constrained robot system at hand, is examined i§14'31 the overall feedback law can be computed to be
the following theorem. 7(t) =M(q)a + R(q, a)a + N(q) - I"(a)f +

Theorem 4.1:The problem of command matching, —C(q, p,a,v,f)-KdB:(q' p,a,v,f)D+FW(t) (5.3)

. X . : dt
for a robot manipulator constrained to grip a load, 'SAppIying the feedback law (5.3) to the system (2.6),
always solvable.

Proof: Consider the P-D feedback law (3.1) with or equivalently the feedback law (5.1) to the system

.,V : 4.2), the resulting closed loop system is derived to
a(q, p,a, v, f,f,a,v) = M(g)a + R(q, a)a + f)e ) g p sy

+N(q) -J"(a)f - C(a,p,a,v,f) ,b(Q,p,a,v) =1k (4.1)

Clearly, the invertibility ofb is guaranteed. Applying 3:q B

the feedback law (4.1) to the system (2.6), the - b O
resulting closed loop system is derived to be . 7(p) = h(a) E (5.4)

Mc(p)V + Re(p, V)V + Ne(p) = LT(p)f 0

Ky+y=Tw 0



From the last equation in (5.4) it is observed that thg¢6] H.Hemami, C.Wongchaisuwat and J.L.Brinker,
performance variables are governed by the equations  "A heuristic study of relegation of control in
yi(t) +xityi(t) = xityiwi(t) i=1,....k (5.5) constraint robotic systemsASME J. Dyn. Syst.
where y; is thei-th element of the performance Meas. Contr, vol. 109, pp. 224-231, 1987.
vector y . According to (5.5) and after appropriate[7] J.K.Mills and A.A.Goldenberg, "Force and
choice ofx;?,yi , the performance variabjg(t) can position control of manipulators during
follow sufficiently close the commandi(t) . From constraint motion tasks'lEEE Trans. Robot.
(5.5) it is further observed that for bounded and Automat vol. 5, pp.30-46, 1989.
wi(t) i=1,..k the variables p, v, v, gs,¢s are [8] H.P.Hua_mg, "The unified formulation of
impulse free and consequently i, v are also  constrained robot systemsP,roc. IEEE InF.
impulse free. Furthermore, the selected joint ~ Conf. ~on  Robotics and Automatjon

coordinates gs as well as the load position Philadelphia, 1988, vol. 3, pp. 1590-1592.
coordinatesp are stable. [9] N.H.McClamrock and D.Wang, "Feedback

stabilization and tracking of constraint robots",
IEEE Trans. Automat. Contr vol. 33, pp.
419-426, 1988.
. [10] B.J.Waibel and H.Kazerooni, "Theory and
7 Conclusions experiments on the stability of robot compliance

The problem of position control, for robot control", IEEE Trans. Robot. and Automatol.
manipulators constrained to carry a load, has been - pp. 95-104, 1991.

extensively studied. Using a nonlinear P-D feedbacgll] z.Li, T-JTam and A.K.Bejczy

law the design requirements of command matchin workspace analysis of multiple cooperating

and command following have been proved to be arms". IEEE Trans. Robot. and Automat.. vol
always satisfied for constrained robots (Theorems 4.1 - pp.’589-596 1991 ' T

and 5.1, respectively). Particular feedback law:
solving the above problems have been determine  G. Tzierakis. “Generalized Command
(Corollary 4.1, 5.1). The controllers are analytic Matching for a I’?obot Gripping an Inertial
expressions of the mechanical characteristics of the | \o4 |EE Proc. Part-D vol. 140, pp.
manipulator and the load. The extension of the 373_3’79, 1992, ’
present results for  uncertain mechanicallll3] M.W.Spong

characteristics of the manipulator is currently unde
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