
1 Introduction
The problem of input-output decoupling is one of the
central control design problems having attracted
considerable attention since the early 70s (see f.e.
[1]-[3]). The case where the system is uncertain, i.e.
the respective robust problem, has been solved in [4],
using a static state feedback, while the robust
input-output decoupling problem via performance
output feedback has been solved in [5]. 

For the case of non uncertain systems the
problem of input output decoupling via static
measurement output feedback appears to be of
limited interest. This holds since the general solution
of the state feedback controller matrices solving the
problem (see [2], [3]), can be equated to the
measurement feedback, factor the measurement
output matrix. The linear form of the free parameters
in the state feedback general solution recasts the
problem to that of solving a standard linear
nonhomogeneous equation. For the case of uncertain
systems the input output decoupling problem via
measurement output feedback is not a trivial
extension of the respective state feedback problem.
The measurement output matrix is usually uncertain
due to measurement devices errors. This problem has
not as yet been solved. Motivated by the above
observations, here, the problem of robust
input-output decoupling is studied for the case of
linear systems with NLUS via a static measurement
output feedback, i.e. for systems described by

, , x.(t)= A(q)x(t)+ B(q)u(t) yM(t)= M(q)x(t)

   (1.1)y(t)= C(q)x(t)
where ,  and . The matricesx F �n u, y F �m yM F ��

, ,  and  belong to i.e. theyA(q) B(q) C(q) M(q) �(q)
are nonlinear function matrices depending upon the
uncertainty vector , where  isq =( q1,�,ql) F Q/ Q/
the uncertainty domain and   is the set of�(q)
nonlinear functions of . The uncertainty domain canq
be any set, while the values of the functions of �(q)
are considered to be real. The uncertainties q1,�,ql

do not depend upon time. The vector  denotesym(t)
the measurable part of the state vector and   is they(t)
output vector. Note that the uncertainties of M(q)
(sensoring errors) may be different than those of the
system data. However all types of uncertainties have
been grouped to the vector .q =( q1,�,ql)

With regard to the problem of robust input
output decoupling via measurement output feedback,
the following results are derived: The necessary and
sufficient conditions, the general analytical
expression of the independent from  the uncertainties
static measurement output feedback matrices and the
general form of the decoupled closed loop system,
sufficient conditions for the solvability of robust
decoupling with simultaneous robust stabilizability. 

2 Transformation of the problem
To system (1.1) apply the static measurement output
feedback law

   (2.1)u(t)= FyM(t)+ G*(t)= FM(q)x(t)+ G*(t)
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where  is the external input vector. The robust*(t)
decoupling via static measurement output feedback
problem is stated as follows: 
Definition 2.1. The problem of robust input output
decoupling via static measurement output feedback is
solvable if there exist independent from  the
uncertainties matrices  and , such that F G

                                                               C(q)sI − A(q) − B(q)FM(q) 
−1

B(q)G =diag hi(s,q)
 (2.2)�q F Q/

For (2.2) to be satisfied it is necessary for the
matrix  to be invertible.  and  are independentG G F
from   if and only if  and , defined byq � �
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are independent from  . According to (2.3) equationq
(2.2) can be rewritten equivalently as follows 

              diag sdi(q)+1 P(s,q)C(q)sIn − A(q) 
−1

B(q) =
               (2.4)= � − �M(q)sIn − A(q) 

−1
B(q)

where

di(q) =








min j / ci(q)A(q)
j
B(q) � 0 for j = 0, ...,n − 1

n − 1 if ci(q)A(q) 
j
B(q) = 0 for j > n

(  denotes  the i-th row of ) andci(q) C(q)
P(s,q) = P0(q)s0 + P1(q)s−1 + � =

diag s−di(q)−1 diag [hi(q)]−1 , P0(q) � 0
Equation (2.4) is equivalent to (2.2) if the following
condition is satisfied

                            (2.5)det � � 0

3 Necessary and Sufficient Conditions
Before establishing our main results some definitions
are presented. Let

 ;       (3.1)C	(q) =

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c1
	(q)
�

cm
	 (q)
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ci
	(q) = ci(q)A(q)di(q)

j 	(i,q) =





min j F 1,�,m / ci
	(q)bj(q) � 0 

0 if ci
	(q)bj(q) = 0

                     ;       (3.2a)b j (q) : j −th column ofB(q)

   ,% i(q) =





ci
	(q)bj	(i,q) , if j 	(i,q) � 0

1 , if j 	(i,q) = 0
    (3.2b)(% i(q) � 0,�q F Q/ )

Taking into account the above definitions and the
definition of the operator  denoting  the rankrank�[�]
of an uncertain matrix on the field of real numbers
[4] the main theorem is established.
Theorem 3.1. The necessary and sufficient
conditions for the robust input output decoupling of
the system (1.1), via the independent from  staticq
measurement  output feedback law (2.1), are

             (3.3)det C	(q)B(q) � 0 , �q F Q/

   (3.4)rank� ci
	(q)B(q) 

T
= 1 , i = 1,�,m

                     rank�




M(q)Li(q)
[% i(q)]−1ci

	(q)A(q)Li(q)


 =

,   (3.5)=rank�M(q)Li(q)  i = 1,�,m
where

 �(q) = B(q)C	(q)B(q) 
−1

 Ac(q) = A(q) − �(q)C	(q)A(q)
Li(q) = � i(q) � [Ac(q)]2n−1� i(q) 

� i(q) =  �1(q) �2(q) � � i−1(q) 0 � i+1(q) � �m(q) 
and where  is the i-th column of .� i(q) �

Proof : According to the reformulation of the
problem (at the end of Section 2), the robust
decoupling problem is solvable if and only if (2.5) is
satisfied and there exist (independent of the
uncertainties)  and  that satisfy (2.4). Eq. (2.4)� �
after some algebraic manipulation may be broken
down to the following set of algebraic equations

                 (3.6a)� i = pi,0(q)ci
	(q)B(q)

   (3.6b)pi,0(q)ci
	(q)A(q) + & iM(q) Li(q) = 0

  pi,1(q) pi,2(q) � pi,2n(q)  =
− pi,0(q)ci

	(q)A(q) + & iM(q) �

(3.7) � i(q) Ac(q)� i(q) � Ac(q) 
2n−1

� i(q) 
where  is the i-th row of the matrix  andpi(s,q) P(s,q)

 are the coefficients of negativepi,0(q),pi,1(q),�
powers of  of . According to (3.6a)s pi(s,q)
condition (2.5) is satisfied if and only if (3.3) is
satisfied and . The vector pi,0(q) � 0 , �q F Q/

 is independent from  , with � i = pi,0(q)ci
	(q)B(q) q

, if and only if there exist api,0(q) � 0 , �q F Q/
function, let  and a vector ,% i(q) F�(q) bi

	 F �1�m

satisfying the condition  where  ci
	(q)B(q) = % i(q)bi

	

 is independent from . Accordingbi
	 = bi,1

	 � bi,m
	  q

to the definition of  [4] the above conditionrank�[�]
is equivalent to (3.4). From (3.5) it holds that

 where  is anpi,0(q) = pi
	[% i(q)]−1 pi

	 F � − {0}
arbitrary parameter. 

The  vectors  solving (3.6b), may or may not& i

be independent from  . Here, we are interested forq
all the solutions that are independent from .q
Substitution  in (3.6b) yieldspi,0(q) = pi

	% i(q) 
−1

  ;  &̃ iM(q)Li(q) = % i(q) 
−1

ci
	(q)A(q)Li(q)

     (3.8)&̃ i = −(pi
	)−1& i

The above equation is a non homogeneous uncertain
equation. According to [4] equation (3.8) is solvable
for  independent from  iff (3.5) is satisfied.��&̃ i q

The symbol "Rank" denotes the rank of rational
matrices over the field of rational functions of s

. The normal rank of  a matrix with real or(�(s))
complex entries is denoted by "rank". An algorithm
for the computation of   may be found in [6].rank�[�]



4 The Controller Matrices 
Define 
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In order to derive the general solution of the
controller matrices the operators  and [�]g

] « � \ � ¬
g

as well as the above definitions will be used. In
particular,  denotes an independent from  q[�]g

]

matrix which is orthogonal to the argument matrix,
and  denotes the projection (in the field of« � \ � ¬

g

real numbers) of an uncertain vector to the subspace
defined by the rows of the uncertain matrix ([4]).
Theorem 4.1. Assume that system (1.1) satisfies the
conditions of Theorem 3.1. Then, the general explicit
expression of the independent from  the uncertainties
controller matrices  and   areG F

(4.1)G = (B	 )−1(P	)−1 ; P	 =diag pi
	 , i = 1,�,m

                 (4.2)F = (B	 )−1H + (B	 )−1TH	

where
 T =

i=1,...,m
diag $ i ($ i F g1�� i ,� i = � −rankg[M(q)[Li (q)]g] ]

is an arbitrary and independent of  diagonal matrix.q
Proof: According to (2.3, 3.6a) and pi,0(q) =

,  is given by (4.1). According to (3.8)pi
	[% i(q)]−1 G

and [4] the general solution of   is&̃ i

                                       &̃ i = $ i M(q)Li(q) �

] +
(4.3)+ % i(q) 

−1
ci
	(q)A(q)Li(q) M(q)Li(q) �

Substitution of  in (4.3) yields&̃ i = −(pi
	)−1&

             (4.4)& i = −pi
	$ i M(q)Li(q) �

] − pi
	� i

From (4.4, 2.3), the general solution of  , isF
obtained to be as in (4.2). � ��

5 The decoupled closed loop system
5.1 Closed loop transfer function
Define

(5.1a)Ri(q) = [M(q)Li(q)]�] M(q)� i(q)�[Ac(q)]2n−1� i(q) 
 � i(q) = � iM(q) − % i(q) 

−1
ci
	(q)A(q)  �

 (5.1b) � i(q) � Ac(q) 
2n−1

� i(q) 
Let  are the rational vectorr i,j(s,q) and� i(s,q)
functions corresponding to the vectors % i(q)Ri(q)  j

and  respectively, where  is the j-th% i(q)� i(q) [Ri(q)] j

row of . The rational vector functions Ri(q) r i,j(s,q)
and  can be expressed as the ratio of two� i(s,q)
polynomials as r i,j(s,q) = � i,j(s,q)/� i(s,q) (j = 1, ..,� i)
and  where  and � i(s,q) = � i,0(s,q)/� i(s,q) � i,j(s,q)

 are prime between themselves. For each � i(s,q)
  is the leastq F Q/ � i(s,q) = s" i + � i," i−1s" i−1 + � + � i,0

common multiplier of the denominators of r i,j(s,q)
and  . The polynomials  � i(s,q) (j = 1,�,� i) � i,j(s,q)

 are of the form(j = 0, ...,� i)
 where � i,j(s,q) = (� i,j)" i−1s" i−1 + � + (� i,j)0 (� i,j)� =

. Note that [(� i,j)�,1,�, (� i,j)�,i](� = 0,�," i − 1) (� i) j

   and    are functions of  .(� i,j)�,j (� = 0,�," i − 1) " i q
Based upon the above definitions the following
theorem is established.
Theorem 5.1. Assume that the conditions of Theorem
3.1 are satisfied and the feedback matrices are those
given in Theorem 4.1 The i-th diagonal element of
the resulting robustly decoupled closed loop transfer
function is  
hi(s,q) = (pi

	)−1% i(q) ai(s,q)
� i(s,q)sdi (q)+1 =

,= (pi
	)−1% i(q)

s"i +� i,"i−1(q)s"i−1+�+� i,0(q)

s"i +� i,"i−1(q)s"i−1+�+� i,0(q) sdi (q)+1

(5.2)�q F Q/ ( i = 1,�,m)
where � i,k = � i,k + (� i,0)k +

� i

j=1
� $ i,j(� i,j)k (k = 0, ...," i − 1)

and  is the j-th element of . $ i,j $ i

Proof: Substitute (4.4) and the relation
 in (3.7) to yieldpi,0(q) = pi

	% i(q) 
−1

  (5.3) pi,1(q) � pi,2n(q)  = pi
	$ iRi(q) + pi

	� i(q)
To derive the general form of the transfer function of
the decoupled closed-loop system, (5.3) is written as 

  (5.4)pi,1(q)�pi,2n(q)  = pi
	

� i

j=1
� $ i,j[Ri(q)] j + pi

	� i(q)

Using the unique bilateral correspondence, between a
strictly proper rational function (with order less than
) and the vector involving the first  coefficients ofn 2n

its negative power series expansion the relation (5.4)
can be expressed equivalently as follows:

 (5.5)pi(s,q) = pi,0(s,q) + pi
	

� i

j=1
� $ i,j r i,j(s,q) + pi

	� i(s,q)

Using (5.1,5.5), relation  and thepi,0(q) = pi
	[% i(q)]−1

comments after (5.1) the theorem is proved.           �

 5.2 Cancelled out polynomial
In this subsection the poles which are cancelled out
in the general form of the diagonally decoupled
closed loop system will be studied. To study the
problem first define  where � i

	(s,q) = � i(s,q)s� i
	(q)

 is the multiplicity of the root at the origin of � i
	(q)

. Define � i(s,q) � i(q) = min{di(q) + 1,� i
	(q)} (q F Q/ )

. According to this definition the i-th element of the
transfer function of the closed loop system is 

 hi(s,q) = (pi
	)−1% i(q) ai

	(s,q)
� i(s,q)sdi (q)−�i (q)+1 ,

        (5.6)�q F Q/ ( i = 1,�,m)
The polynomials  and  are prime� i(s,q) � i(s,q)

between themselves. This holds since  and � i(s,q)
 are prime between themselves,� ij (s,q)(j = 0,�,� i)

at any , by construction. Hence, theq F Q/
polynomials  and  are also� i

	(s,q) � i(s,q)s� i(q)−� i(q)+1

prime between themselves, at any . Theq F Q/
polynomial involving the poles which are cancelled
in the general form of the transfer function of the
robustly decoupled closed loop system are the roots



of the polynomial pu
	(s,q) = detsI−A(q)−B(q)FM(q) 

char.poly diag hi(s,q) =

. The following theorem
detsI−A(q)−B(q)FM(q)

	 i=1
m

� i(s,q)sdi (q)−�i (q)+1

regarding the determination of the polynomial
involving the poles which are cancelled out in the
general form of the closed loop system transfer
function is proven in [4]. 
Theorem 5.2. Assume that the conditions of Theorem
3.1 are satisfied. The poles which are cancelled out
from the diagonally decoupled closed loop transfer
function, resulting after the application of the class
of controllers given in Theorem 4.1, depend entirely
upon the open loop system and they are the roots of

the polynomial ;pu(s,q) = det C(q)[sI−A(q)]−1B(q) det[sI−A(q)]
�(s,q)

                                                    ��(s,q) = 	
i=1

m
� i
	(s,q)

6 Robust decoupling with simultaneous
   Hurwitz invariability
The stabilizability of the transmission poles of the
closed loop  system is equivalent to   

                        (6.1a)� i(q) − � i(q) + 1 = 0
 (6.1b)� i(s,q) : is Hurwitz �q F Q/ (i = 1,�,m)

The condition (6.1a) is necessary in order to
avoid  poles at the  origin. The� i(q) − � i(q) + 1
second condition, i.e.  the Hurwitz invariability of

, depends upon the degrees of freedom  .� i(s,q) $ i,j

The degree   of  is a nonlinear map of " i � i(s,q,$ i,j) q
while the coefficients  of  are piecewise� i(s,q,$ i,j)
continuous functions of  [4]. The degreeq
of  is depending from . The uncertain� i(s,q,$ i,j) q
domain  is divided into finite sets, letQ/

 in which the degrees Q/ k (k = 1,�,�) " i(q) = " i,k

of  remain independent of . The number� i(s,q,$ i,j) q
of these sets is finite. The sets  areQ/ k (k = 1,�,�)
considered to be compact. Define

   (6.2a)Ai,k
		(q) =  � i,k(q) Ai,k(q)  , k = 1,�,�

where 

  Ai,k(q) =










0 � 0
(� i,1)" i,k−1 � (� i,� i )" i,k−1

� � �

(� i,1)0 � (� i,� i )0










       (6.2b)� i,k(q) =










1
(� i,0)" i,k−1 + � i," i,k−1

�

(� i,0)0 + � i,0










Based upon the above definitions and the respective
results in [4, 7], the following theorem is established. 
Theorem 6.1. Robust decoupling with simultaneous
transmission pole robust stabilizability, via an
independent from  static measurement outputq
feedback law, can be accomplished if: The conditions

of Theorem 3.1 together with condition (6.1a), are
satisfied. The elements of   areAi,k

		(q) (k = 1, ...,�)
continuous functions of  for all .q q F Q/ k (k = 1, ...,�)
There exist -row submatrices of " i,k Ai,k

		(q)
, let  (containing columns of (k = 1, ...,�) Ai,k

	 (q) Ai,k
		(q)

appearing in like positions ) which are(k = 1, ...,�)
simultaneous positive antisymetric [4].                    �
         With regard to the robust stabilizability of the
closed loop system poles, combining Theorems 5.2
and 6.1 the following theorem is established. 
Theorem 6.2. Robust decoupling via static
measurement output feedback with simultaneous
robust stabilizability can be achieved if the
conditions of Theorem 6.1 are satisfied and pu(s,q)
,is Hurwitz invariant for every .����  ��q F Q/

7 Conclusions
The problem of robust input output decoupling via
static measurement output feedback, has extensively
been solved. The necessary and sufficient conditions
for the problem to have a solution, have been
established,  the general analytical expressions of the
independent from the uncertainties static feedback
and the general form of the decoupled closed loop
system, have been derived. The polynomial of the
cancelled out poles is determined. Finally, sufficient
conditions for robust decoupling with simultaneous
robust stabilizability, have been derived.
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