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Abstract: - In this paper the problem of robust input-output decoupling for linear systems with nonlinear
uncertain structure (NLUS), via an independent from the uncertainties static measurement output feedback
law, is studied. The necessary and sufficient conditions for the problem to have a solution, are established. Th
general analytical expressions of the feedback matrices and the decoupled closed loop system are derived. Ti
problem of robust input - output decoupling with simultaneous Hurwitz invariability, is also studied.
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1 Introduction y()= C(x(t) (1.1)
The problem of input-output decoupling is one of thewhere x € R", u, ye R™ ard yy € R*. The matrice

central control design problems having attracteca(q), B(g), C(q) ard M(q) belong 6 ¢ (q) i.e. they
considerable attention since the early 70s (see f.are nonlinear function matrices depending upon the
[1]-[3]). The case where the system is uncertain, i.euncertainty vectoq= qi,...,q) €@ , whee Q is
the respective robust problem, has been solvedin [4the uncertainty domain dn o (q) is the set of
using a static state feedback, while the robushonlinear functionsfcg. The uncertainty domain ca
input-output decoupling problem via performancebe anyset, while the values of the functions g (q)
output feedback has been solved in [5]. are considered to be real. The uncertairq;, ..., q

For the case of non uncertairyseems the do not depend upon time. The vec y,(t) denotes
problem of input output decoupling via static the measurable part of the state vectat y(t) is the
measurement output feedback appears to be afutput vector. Note that the uncertainties M(q)
limited interest. This holds since the general solutionsensoring errors) may be different than those of
of the state feedback controller matrices solving thesystem data. However all types of uncertainties h
problem (see [R [3]), can be equated to the been grouped to the vecig% qi,...,q)-
measurement feedback, factor the measurement With regard to the problem of ro
output matrix. The linear form of the free parametersoutput decoupling via measurement outp
in the state feedback general solution recasts thghe following results are derived: The ne
problem to that of solving a standard linearsufficient conditions, the general
nonhomogeneous equation. For the case of uncertagxpression of the independent from the
systems the input output decoupling problem viastatic measurement output feedback mat
measurement output feedback is not a trivialgeneral form of the decoupled closed |
extension of the respective state feedback problensufficient conditions for the solvability
The measurement output matrix is usualtcertain  decoupling with simultaneous robust stab
due to measurement devices errors. This problem has

not as yet been solved. Motivated by the above) Transformation of the problem

observations, here, the problem of robustrq sysiem (1.1) apply the static measurement output
input-output decoupling is studied for the case Offaedpack law

linear ystems with NLUS via a static measurement U= Fym(tF Go)= FM(gX(H+ Go() (2.1)
output feedback, i.e. for systems described by

X(t= A@x(Er B@u()) , ym(t= M(gx() ,
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wherea)_(t) is_ the gxternal input vector. The robust ranky 5 ¢; (0)B(q) g =1, i=1,...m (3.4
decoupling via static measurement output feedback
problem is stated as follows: . rank '_\i'(?)Li(CI) -
Definition 2.1.The problem ofrobust input output 0 [vi(@] ¢ (@A@Li(a) O
decouplingvia static measurement output feedback is =ranky IM(Q)Li(9q)0,i =1,...,m (3.5)
solvable if there exist independent from  thewhere B § 1
uncertainties matriceF aK.I;;I , such that AA(((;) ‘f((q)) Dz((?)CI:s((Q))E\( )
C(a) 31 - A(0) - B(A)FM(a) 0 B(A)G =diag{hi(s o) } o(Q) = AG) = AL (DA

Vge® (2.2) Li() = @i(@) - [Ac(@]**Ai(a) O

For (2.2) to be satisfied it is necessary for theAi(@ =H91(@) 92(@) ~ 9i-4(a) 0 disa(@) - Im(@) H
matrix G to be invertibleG anF  are independentand whereji(q) is thieth column ofA .

from q if and only ifC an«® , defined by Proof : According to the reformulation of the
Oy O O O problem (at the end of Section 2), the robust
r=H: Heet o=H: HegtF (2.3) decoupling problem is solvable if and only if (2.5) is
0 H ’ U ' satisfied and there exist (independent of the

U
, 07m O D¢m_ U . uncertainties)' andd that satisfy (2.4). Eq. (2.4)
are independent frong . According to (2.3) equationfier some algebraic manipulation may be broken
(2.2) can be rewritten equivalently as follows down to the following set of algebraic equations
diag{s"@*}P(s, q)C(q) BBl — A(Q) O 'B(q) = v = pio(g)cr (Q)B(Q) (3.6a)

=M -OM(Q) 3l —AQ D BO) (2.4) { piol@cr(@A@ +#iM(@) |Li(q)=0 (3.6b)

where Hpia@ pi2(@ - pin(d) H=

:% min{j/ci(q)zk(q)j_l?;(q)aeo} for j=0,...n-1

M@= e@m@IB@=0 for  j<n s pi,o(q)cr(q)A(q)+¢iM(qnzl}X
(ci(q) denotes theth row ofC(q) ) and Hoi(a) Adadi(@ -+ (@D o) H 3.7)
P(s,q) = Po(q)s® +Py(g)st+ - = wherepi(s, q) is the-th row of the matriXP(s,q) and

diag(s @2 }diag{[hi(q)] 2} , Po(q) + 0 pio(q), pia(Q),... are the coefficients of negative

. : : : . powers ols 01pi(s,q) . According to (3.6a)
Equation (2.4) is equivalent to (2.2) if the following . ion ™2 5 is satisfied if and only if (3.3) is
condition is satisfied Iy

detT'} 0 (2.5) satisfied and pio(Q) #0, Vvqe @ . The vector
yi =pio(@)ci(g)B(g) is independent fromqg , with

3 Necessary and Sufficient Conditions ~ Pio(@#0. vqe @, if and only if there exist a

i . * = R Ixm
Before establishing our main results some definitionsfuncuon’ letvi(g) € p(a) and a vectchy € %

ted. Let satisfying the conditiorc;(q)B(q) = vi(g)b;  where
e preseréec*(q)e M by = b1 - binwB is independent frorq . According
1

iy = H v to the definition ofranks[-] [4] the above condition
= . . * =C: di(q) R
c'@ %c*k) E ci(@=ca@AQ@™™  (3.1) is equivalent to (3.4). From (3.5) it holds that
Jent® [ pio(c) =pi[vi(@] " where p;e%-{0} s an
o _Hmingje{1,...,m}/c(@b(@ =0 H arbitrary parameter.
jrt.o) = B 0 if cr(g)b(g)=0 The vectorsg; solving (3.6b), may or may not

(3.2a) be independent fromq . Here, we are interested for

. oF . j —th column ofB . .
1@ @ all the solutions that are independent frcon

Ui(q):ECi"(q)bwim ,if j*(i,g)#0 Substitutior pio(q) = p; i(q) D" in (3.6b) yields
g b iroreg=0 - FM@Li() = Di(a) 0 ¢ @DA)Li(0)
(vi(g) #0,vqe @) (3.2b) ¢ ==(p) i (3.8)

Taking into account the above definitions and theThe above equation is a hon homogeneous uncertain
definition of the operatoranks[-] ~denoting the rank equation. According to [4] equation (3.8) is solvable
[4] the main theorem is established. N The symbol "Rank" denotes the rank of rational
Theorem 3.1 The necessary and sufficient matrices over the field of rational functions sf
conditions for the robust input output decoupling Of(*R(s)). The normal rank of a matrix with real or

the system (1.1), via the independent fpm  stali¢ompjex entries is denoted by "rank”. An algorithm

measurement output feedback law (2.1), are for th tati ; . be found in [6
det C*(Q)B(q)} #0 , Vqe® (3.3) or the computation ofanky[-] may be found in [6].



4 The Controller Matrices (i=0,..7 are of the form

Define 11 (S,Q) = (ij) o187+ o+ (uij)o Whefeh(ﬂi,j)z =
-1 Y, N, 17 = o AY
7= mi(@) O c; (@A@Li(@) IM@Li(@) )y Eff‘];zf@:g‘ f’f?g;fi(g 1)0’5;{(30; %re'“fjﬁcfioité“&;
B4 B Hmf{ J M@Li@L: §  Based upon the above definitions the following
B =H EH:‘E : EH =4 : E theorem is established.
0bm O O4m O 0 IM(Q)Lm(0) 0  Theorem 5.1.Assume that the conditions of Theorem

In order to derive the general solution of the3.1 are satisfied and the feedback matrices are those

as well as the above definitions will be used. Inthe resulting robustly decoupled closed loop transfer
particular, [-]4 denotes an independent frong  functionis

matrix which is orthogonal to the argument matrix, hi(s,d) = (pT)_lvi(Q)% =

and( -\ - ) denotes the projection (in the field of = (pr)0i(q) §140i-1(Q)S71 4 +ai0(0)

real numbers) of an uncertain vector to the subspace ' B 4Bio (@S 4@ RO
defined by the rows of the uncertain matrix ([4]). vge@ (i=1,...m(5.2)

Theorem 4.1.Assume that system (1.1) satisfies theyhere fix = ai’k+('ui’0)k+z tij(uij)k (K=0,...,01 - 1)
conditions of Theorem 3.1. Then, the general explicit _ _ =1
expression of the independent from the uncertaintie@"di; i thg-th element of; .

controller matricesG ancE  are Proof: Substitugcle (4.4) and the relation
G=(B*)(P")?; P =diag{p;}, i=1,...m@.1) Pio(@=p'Di(@O in(3.7) toyield
F=(B*)"H+(B*)"TH" (42) Hpia@ - pin(@ B=proRi(@) +pidi(a)  (5.3)
where To derive the general form of the transfer function of
T:i_cllia%1 {zi} (ri e RY™, 7ty = u —rankz[M(q)[Li ()] ] the decoupled closed-logzp system, (5.3) is written as
is an arbitrary and independentcpf  diagonal matrix. i) Pin(Q) B= PF j:eri,j[Ri(q)]j *+pidi@ (5.4)
Proof. According to (2.3, 3.6a) andpio(d) =  Using the unique bilateral correspondence, between a
prlvi(@]™, G is given by (4.1). According to (3.8) strictly proper rational function (with order less than
and [4] the general solution ¢f  is n) and the vector involving the fir2n  coefficients of
¢i = riD\/I(q)Li(q)D; + its negative power series expansion the relation (5.4)
+< i(9) O ¢ (@A@QLi(q) \M(@)Li(@)),, (4.3) canbe expressed equivalently as follows:
Substitution o' ¢ = —(p?) ¢ in (4.3) yields pi(s.@) = pio(s, q) +p; FZlmri,j(S. Q) +pini(sa) (5.5)
¢i = —p; i IM(QLi (@) Ty — pi7i _ (4.4)  Using (5.1,5.5), relatiorp; o(g) = p;[vi(6)] > and the
From (4.4, 2.3), the general solution oF , iScomments after (5.1) the theorem is proved. =
obtained to be as in (4.2). ® 5.2 Cancelled out polynomial
In this subsection the poles which are cancelled out
5 The decoupled closed loop system in the general form of the diagonally decoupled
5.1 Closed loop transfer function closed loop system will be studied. To study the
Define problem first definea;(s,q) =ai(s,q)s"@  where
Ri(0) = [M(Q)Li()] &M@ @i(@) - [Ac(a)] " i(g)O5.1a)  «i(q) is the multiplicity of the root at the origin of
(@) = BMI(@) - (@) 0 (A B (59). Define xi(d) = min{d(¢) + Lx7(@) (0 < @)

. According to this definition theth element of the

n-1
oi@ - ;@d 5i(q_) H (6:1b)  { ansfer function of the closed loop system is
Let rij(s,g) andzyi(s,q) are the rational vector &} (s9)

hi = |* 1 i di(@)-rj(@+1 1
functions corresponding to the vectwi(q)[R; (OI)D (s.a) = () ~vi(®) ﬂi(;qé;'”(é@(i 1 m (5.6)
S = .
andvi(q)¢i(q) respectively, whe®i(q)]; is th¢éh e :
row of Ri(q) . The rational vector functiorr;;(s, q) The polynomialsa;(s,q) anfi(s,q) —are prime

and 7i(s.q) can be expressed as the ratio of twobetween themselves. This holds sirai(s, Q) and

) = o i(s,0)(j =0,...,m) are prime between themselves,
polynomials aij(s,q) = uij(s q)ai(s,q) ( =1,..,7) Hi .
and (s, Q) = uio(s, Qlai(s, Q) where u(s.g)  and at any gqe@, by construction. Hence, the

_ : polynomialsa;(s,g) ancpi(s,g)st@*@*1  are also
ai(s,q) are Enme betwegi? themselvgs. For each prime between themselves, at aiqe @ . The
ge @ ai(s,q) =" +dj4-18""1+ - +ajo IS the least

common multiplier of the denominators ri;(s, ) polynomial involving the poles which are cancelled
__p s risd in the general form of the transfer function of the
and 7i(s,q) (j =1,...,7) . The polynomizg ui;(s,q)

robustly decoupled closed loop system are the roots



ial pi(s q) = EBrAQOBOM@D _ - of Theorem 3.1 together with condition (6.1a), are
oze ;:iq)_s(gm?;“al pi(s, ) chat poljdiaglh(sa)}) satisfied. The eIemgents @€ (a) (k=1,...,(v) )are
T, peasawn) - 1ne  following theorem  continuous functions «  for eqe @« (k=1,...,)

regarding the determination of the polynomial There —exist oix -row submatrices ofAji(q)
involving the poles which are cancelled out in the(K=1,...,v), letAy(g) (containing columns A(q)
general form of the closed loop system transfe@ppearing in like position(k=1,...,) ) which are
function is proven in [4]. simultaneous positive antisymetric [4] [ |
Theorem 5.2 Assume that the conditions of Theorem With regard to the robust stabilizability of the
3.1 are satisfied. The poles which are cancelled ouglosed loop system poles, combining Theorems 5.2
from the diagonally decoupled closed loop transferand 6.1 the following theorem is established.
function, resulting after the application of the classTheorem 6.2. Robust decoupling via static

of controllers given in Theorem 4.1, depend entirelymeasurement output feedback with simultaneous
upon the open loop system and they are the roots ¢pbust stabilizability can be achieved if the

- _ def{C(q)[sI-A@)] *B(@)} defsi-A@)] . conditions of Theorem 6.1 are satisfied ¢ pu(s, q)
the polynomial = ; . . . !
o™ Pu(s, ) a(sa) Jis Hurwitz invariant for everg € Q. ]
a(s, q) = LT af (s, q) n

7 Conclusions
6 Robust decoupling with simultaneous The problem of robust input output decoupling via
Hurwitz invariability static measurement output feedback, has extensively
been solved. The necessary and sufficient conditions
for the problem to have a solution, have been
) established, the general analytical expressions of the
independent from the uncertainties static feedback
and the general form of the decoupled closed loop
system, have been derived. The polynomial of the
cancelled out poles is determined. Finally, sufficient
conditions for robust decoupling with simultaneous
fobust stabilizability, have been derived.

The stabilizability of the transmission poles of the
closed loop system is equivalent to
ui(@-xi(@+1=0 (6.1a
pi(s,q) : is Hurwitz vqe@ (i=1,...,m) (6.1b)
The condition (6.1a) is necessary in order to
avoid wi(g)—«i(qQ)+1 poles at the origin. The
second condition, i.e. the Hurwitz invariability of
pi(s,q), depends upon the degrees of freedwu;;
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