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Abstract: The collision avoidance and path planning problem is examined in terms of digital
topology. We assume that  an object is represented by a 3D digital “image”. The unit cell
in this casc is a cube and an object can occupy a number of cells in R* space. We also
assume that its configuration space is digitized by cubes. Thus space 9’ xS0O3) is digitized
to allow a digitized motion. The configuration at a given moment of the object is the 6-plet
{1J,k.LLm,n} corresponding to the parameters (x,y,z,¢,0,). We allow movements only to
ncighboring cells and we compute the volume that the object sweeps during these infinitesimal
movements. Thus  the collision avoidance problem becomes a search problem for the allowed
movements based on the volumes swept. This method is brute force but allows approximations
of possible  motions for an object. Further ways to reduce the computational load will be
investigated.
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tools. There was an analogous cffort to

1. Introduction. study the topology and the geometric
Digital pictures have been the subject of properties of 3D digital images |3][4]. The
rescarch  from the first days of computers clements of 2D pictures are called pixels
cvolved o the  field of computer image and cover a square unit of arca. Equivalently
analysis  and  recognition.  Geometric the elements of 3D pictures arc called
propertics  of  digital sets have been voxels covering a cubic unit of volume.

investigated and  efforts have been focused Geometric properties of 3D pictures have
on  the topological properties of two- been studied in an extensive bibliography.
dimensional (2D)  digital images. There Specifically concepts like  connectivity,
exists a well-developed  theory (([1][2]) for adjacency,  “thinning”,  surfaces  and
the topology of 2D digital sets. components have been investigated |[5][6]
With  the  evolution  of computerized [7] [8]- The main target is to associate these
tomography and three-dimensional object propertics  with specific featurcs of the
scanning there was an increased need for object for recognition and identification.

three-dimensional (3D)object representation



Our task in this work is to use 3D
representation of  objects for  motion
planning and collision avoidance to be used
in automated environments, teleoperations
and robotics.  In  addition to this
representation we  use  a 3D digitized
version of the configuration space of a body
to investigate the problems of planning and
collision avoidance from this perspective.

2. 3D digital representation of solids.
For a 3D digital representation of a solid we
create a 3-dimensional array of lattice points
which correspond to the centers of equal
unit cubes. In the case of motion planning
the cubes are considered as units of mater
comprising the object, occupying volume
approximatcly cqual to that of the object.
The size of the unit cube is small enough to
depict the details of the shape of the object.

The lattice points in 3D pictures  have
intcger dimensions and can be represented
by a triad (i,j,k) corresponding to the
center of cach  unit cube. We can define
next the neighborhood of the point (i,),k)
using as base for the description the
corresponding cube [3]

1. Six “face neighbors” (ix1,),k), (1,jx1,k)
and (i,),k=1)

2. Twelve “cdge neighbors” (ix1,jx1,k) ,
(i,jx1,kx1) and (ix1,),k=1) the signs are
choscn independently

3. Eight “corner ncighbors” (i+l,j+1,k+1)
all three sings are chosen independently.

The topology is defined with respect to
these neighboring cubes. The face neighbors
are called “6-neighbors” and choosing this
topology means that the point (i,j,k) is only
connected 1o these 6-neighbors (we can go
from (1,},k) directly to cach of these 6 points,
but not to the other neighbors ). In
analogous way we can chose the topology
of the “18-ncighbors” with the neighbors of
sets 1 and 2. Or the “ 26-neighbors” the
points of all the three above sets.

In fact choosing a type of neighborhood

for a  digitized  spacc  has  some

implications when trying to interpret or
replicate facts and results  from continuous
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topology [4]. Actually the 18-neighborhood
leads to some paradoxes and is avoided. The
“6-neighbors” and “26-neighbors™ arc better
posed in terms of connectivity and curve
description. This is mainly becausc they
result respectively from two natural norms.
The 6-neighborhood from the “grid
distance” i.e. for two points (x,y,z) and
(s,t,u) is defined as |x-s|+|y-t|+|z-u] (known
for 2D as the city block metric). And the 26-
neighborhood from the “lattice distance”
defined as max( |x-s}, |y-t|, |z-ul) (known for
2D as the chess board metric).
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Fig.1 The 6-neighbors and the corresponding
lattice.

In Fig. 1 we can observe the “6-ncighbors”
and the corresponding lattice.

We assume that following one of the
methodologies in literature we can construct
a 3D representation of a solid. The initial
data can result from a variety of sources c.g.
a functional description of the surface
f(x,y,z)=0 of the solid. This will not be the
usual case a more realistic assumption is to
consider that we have a range of surface
data obtained from a laser scanning device
or a tomography. The range data are used
then to create a triangulated mesh of the
surface of the object. The 3D picture of the
object is then created based on this surface
model. One method could be,  starting
from an initial internal point to fill up the
volume with unit cubes until the surface is
reached. This is an analogy to the “inflated
balloon method” [9] of range data
triangulation (Fig. 2)
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Fig.2 Filling up a triangulated surface to create a
3D picture of an object

In fact for the purposes of motion planning
and collision avoidance the triangulated
surface should be crossed by the expanding
cubic lattice except in cases where a face of
a unit cube coincides with a triangle on

Object Interior  Object Surface
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a. b.

Fig. 3 a) An accurate representation of an
object b) a more appropriate representation for
collision avoidance.
the surface. The accuracy of the model is

not the first issue here instead taking the
safc side is more important. There are
cases where a digital 3D representation of
the object is less  accurate than other
representations but - more suitable for path
planning and collision avoidance (Fig. 3) .
Therefore  the 3D representation of an
object based onrange data should contain
the corresponding triangulated surface or in
best cases coincide with a triangle element.
The 3D lattice we obtain from a digitization
as we described  can be represented by a
trcc and the maximum number of the
children nodes for each node depends on
the type of topology we select (6-or 26-
ncighbor). The root node is considered to be
the point that we start the object filling up
process and the nodes that have the
maximum possible number of children are
internal to the object. Instead nodes without
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maximum number of children nodes
correspond to surface points of the object
(Fig. 4) .

Fig. 4 A tree structure representing an object
with 6-neighbor topology. The black node is
internal point.

3. Motion trajectories and configuration
space of a solid object.

The state of a free solid object in R* at
a certain moment can be represented by a
point in R* corresponding to the position of
the object reference frame and a point in
SO(3) (the group of rotations) corresponding
to the orientation of the object .

The configuration space of an object s
the product R’xSO(3) and can  para-
meterized with the 6-plet  (x,y,z,,0,y)
where (¢,0,y) are the Euler angles [10][11].

6
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Fig. 5 The SO(3) representation by the compact
sphere.

There exists a geometric representation of
SO(3) group by the compact solid sphere as
in Fig .5.

The point P in Fig. 5 has coordinates (¢,0,3)
measured from the origin and represents an
orientation of a solid object at a certain
moment. Angle 1y is measured as the
distance form the origin of the compact
sphere on the corresponding diameter. The
points on the surface of the sphere are
topologically identified with the dia-
metrically opposite since -m<y=m. We have



also -n<0smt and -m<@=m. A trajectory
motion of a rigid body can be represented
as a pair of trajectories in R’xSO(3) which
could be parameterized by time (s(t),u(l))
(Fig.6).
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Fig.6 The motion of a body and the correspon-
ding position and orientation trajectories.

Next moving along the same framework of
spacc representation we can  digitize the
configuration spacc of a rigid body and
create an alternative mode for representing
its motion.

Digitizing the product space H’xSO(3) is
actually similar to what we have talked for
the 3D representation of a solid object. In
fact we can create a grid to digitize R’
assuming that initially the unit cubes have
the same cdge length as the corresponding
of grid for solid representation. This will
facilitate the representation of translation
motion. Grid with different size will result in
more complicated problems which will be
investigated in future work. A continuous
trajectory in R’ can be represented by a
sequence of points P, Py,...,P, identified
with the centers of unit cubes that the
trajectory passes through (Fig. 7).
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Fig. 7 A continuous curve identified with the
points P,,P,,P-.

In an equivalent manner we can create a
spherical lattice to digitize SO(3) sce (Fig.
8).

7

u(t)

Fig. 8 A trajectory in SO(3) group and the
spherical grid

Important issue for the digitizing of the
configuration space is the sclection of the
topology . A choice of 6-neighbor topology
would mean that we move from a point P,
to a point Py, only if Py, belongs to the
6-neighbors of P, (only onc of the
dimensions change). In fact the 6-neighbor
topology is considered most appropriate for
the digitization of %> and SO(3) because it
simplifies the problems of path planning
and collision avoidance to a certain degree.
This is the case if we consider only onc
translational and one rotational parameter
changing each time the body moves from
onc point in the configuration space (o
another. We can analyze the effects of the
motion of the body much ecasicr. Actually
this way we decouple the motion of the
body along and around the different axes.



4. The changes of the 3D picture of a
solid caused by the digitized motion.
Next we want to investigate the result of
the  digitized framework we  developed.
Actually for the purposes of path planning
and collision avoidance we need to identify
the volume that the 3D digital picture of
the object sweeps during a  transition from
one pair point ( P, Oy) in the configuration
space to the next of a digitized trajectory
(Phrls()lnl)'
We  examine separately the case  of
translation and rotation. The case of
translation is straight. In the 6-neighbor
topology a transition from a point (i,j,k) to
a point with only one coordinate change
c.g. (i+1,),k) will cause every unit cube in
the set X that constitutes the 3D solid
representation  of the object to move in the
x direction by one point in lattice. The result
is that the volume V that the body sweeps
during this clementary motion is the union
of the original set X and the set of cubes X’
resulting from the displacement of X by one
cube (in this case in the direction of x)
V=2NZ".
The  sitwation  for rotation is  more
complicated but with certain assumptions
we can have more tractable results. Assume
a translation from point Oy to a point next in
the trajectory Oy, (also in the 6-
ncighborhood of Oy) in the digitized version
ol SO@3). If the coordinates of O, are
(I,m,n) then we can assume a  transition to
the next point e.g. (1+1, m,n).
Il the spherical grid in SO(3) has a very
small Iength da which corresponds to an
infinitesimal angle. We can write  down the
transformation matrix for this infinitesimal
rotation around the X axis [11]:

1 0 0 0

0 1 -6a O
Rot(x,0a) =

0 oa I 0

0 0 0 1
This  transformation changes also the
position of the voxels of the initial 3D
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oxel (p,q,1)

Fig.9 The effect of motion to the next point in
SO(3) on a voxel of the object.

representation of the object. Assume a point
in the lattice of the object with coordinates
(p,q.r) we can visualize in Fig. 9 the effect
of the infinitesimal rotation.

If the length of the lattice cube in R* is b
then coordinates of the center of the
voxel initially are in :

[p*b,q*b, r*b]

The coordinates of the center of the voxel
after the infinitesimal rotation arc

1 0 0 0][p*h
0 1 -68a Of|g*b
0 éa 1 0O||r*p
0 0 0 1 1

or
[P*b ,q*b -Ga*r*b, r*b+da*q*b

In Fig. 10 we can observe the change of the
position and orientation of a voxel due 1o a
transition from a point O, 10 a neighbor
point Oy, (rotation around x axis) in the y-
z plane. If we restrict the motion of cach
voxel uniformly, during a transition from
one orientation Oy to a neighboring one
Ohnsi then we can make conclusions
about the volume that each voxel sweeps
during such transition.
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Fig. 10 The change of a voxel position due to an
infinitesimal rotation

Consider the minimal sphere that covers a
voxel (unit cube). For a transition of the type
(Lm,n) to (I+1,m,n) in the y-z plane the
voxel can have any orientation inside this
sphere. There is no change in orientation in
the other planes since the rotation is only
around the x axis. If we want to restrict the
motion of the voxel within the four
ncighboring voxels (Fig. 10 dark voxels) we
can imposc  constraint  on the size of the
rotation. This can happen for the particular
transition (Im,n) to (I+1,m,n)  which is
positive and the voxel is located in the first
quadrature (g=1, r=1) . For voxels in other
quadratures  we  can constraint the motion
of the voxel to the rest three sets of  voxels
cach sct corresponding to a quadrature.
When gz1, 21 (both coordinates positive)
any positive rotation  will move  all the
points of the cube  within the quadrature
defined by the two planes depicted with the
solid line (Fig. 11). The minimal covering
sphere for cach voxel has a radius R= by 2
/2 (b the side of the unit cube). In order for
the sphere 10 remain within the area of the
three neighboring voxels (Fig. 11)  the
center of the sphere should remain within
the dark arca.

1|

Fig. 11 The constrained rotation.

We can imposc an upper limit by requiring
that the center of  minimal containing
sphere lies within the dark square with side
(3- V2)*b/2. This way the moving voxel

will at the most touch the sides of the
neighbor voxels (solid lines).
So we have the constraints :

Sa*r <(3-v2)/2
Sa*q <(3-v2)/2

Considering all three dimensions the
following constraint guaranties that cach
voxel during an  clementary  rotational
motion will sweep at most four ncighboring
voxels :

60| = (3-v2)/2*min(1/|p|, 1/q|, 1/]r])

Therefore with a lattice da for SO(3) that
satisfies the above constraint we can always
have that the motion of a voxel  during an
infinitesimal rotation around one axis will
at the most sweep four neighboring voxels
depending on the quadrature of the voxel.
We have defined therefore the volume that
a 3D picture of an object sweeps during a

/

Fig. 12 Example of a rot-solid in two
dimensions left is the original solid

motion from one point Oy to a ncighboring
one O,y in SO(3). In Fig. 12 we can the
volume that the 3D representation sweeps
for a one point transition in the digitized
SO(3) around axis x. We call the resulting
volume rot-solid for the transition (l,m,n)-
>(1+1,m,n). The rot-solid is an c¢xtension of
the original 3D representation that describes
a particular rotational transition in the SO(3)
grid. It is actually a volume envelope  that
includes the 3D solid during this clementary
motion.

5. The 3D picture and a motion
trajectory.

A motion trajectory of a rigid body within
the work frame we have described can be



represented as a sequence of pairs of points
( Py, Oy P,O)), .....( Py, On) such that
Py, P, ....Pn€ W and O, O,
€ S0(3). We can also assume that the
pair (Py, Oy) h&{l,..m} corresponds to a
time 1. This means that the trajectory can be
given a time parameterization allowing this
way the motion planning and the connection
ol these type of  representation with
dynamic modeclling.

There is a main implicit constraint that is

imposed  on this type of trajectory
representation - with voxels.  Consequent
points that  belong to a  sequence

representing a trajectory are unit-neighbors.

This mcans that P, belongs to the
ncighborhood of Py, and O, in the
ncighborhood of Oy,. Where  neighbor

means 6- or 26 — neighbor. We indicated in
the previous scction that  the 6-neighbor
topology is more appropriate to describe the
resull  of a clementary motion. We will
lcave the investigation of other topologies
for future works.

Assumce a motion step from (Py, Oy) to
(Phir, Onyy)  such that if Py, =(i,j,k) then
Py, can only be onc of the following points
in Z' ic Py, =(ixl,j,k) or (i,jx1,k) or
(1,),k=1). Equivalently if Oy =(1,m,n) then
Opsr =(1=1,m,n) or (I,m=1,n) or (I,m,n+1).
In this case the motion can be decoupled
we  can  consider first the translational
motion (P, —Py,, ) and then the rotational
(O —Onyy ) or vice-versa. This is maybe a
good way to study the details of the motion
ol the body but does not represent reality.
The natural way is to have both translational
and rotational motion executed contempo-
rarily since cach point is associated with a
time instance t, that marks the instantaneous
position and oricntation of the body.

The motion from Py, o Py, causes the rigid
body to sweep a part of R’.The total
volume which is swept is the union of the
sct of voxels occupied by the body at
position Py and the set of voxels occupied at
position Py,,. The motion for example from
(i,1,k) to (i+1,j,k) is a translation of all the
voxels by one voxel to the direction of x
coordinate. Since the translation is linear the
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volume swept during this motion is the
union of the voxels at P, and at Py, ;.

The volume swept by the infinitesimal
rotation is the corresponding rot-solid for
the particular rotational movement from O,
t0  Onyy. Contemporary translation and
rotation means to superimposc the (wo
motions. To compute the corresponding
swept volume by the two motions we  can
translate the rot-solid by one voxel o the
direction of P, to Pp,,. The union of the set
of wvoxels which corresponds to the rot-
solid at position P, and the set of voxels
which corresponds 1o the rot-solid at
position Py, is the maximum possible swept
volume by the combined motion. This gives
an envelop for the volume swept by a
combined translational and rotational move
since the full rotation is not completed
before reaching Py, ;. Consider the c¢xample
of Fig.12 where we indicate the rot-solid
for an infinitesimal rotation from O,= (i) to
O,= (i+1). The rotations allowed in 2-
dimentional space are only 1-dimensional
(around the axis vertical to the plane of

the text). Then if we superimposc  the
described  infinitesimal rotation with a
translation  from  point  P,=(i,j) 1o

Py1=(i+1,)), the result of the swept arca s
given by the union of the rot-solid at P, and
Py (Fig. 13). Thus for motion planning or
collision avoidance of the body in Fig. 13
from the pair point (P, O,) to (Py,1, O,-))
we have to consider the swept  arca
indicated in Fig. 13.

Fig. 13 The result of combining translational and
rotational motion

6. Conclusions

In this work we have created a framework
to use 3D picture of objects 1o investigate
path planning and collision avoidance
problems. We constructed a  digitized
version of the configuration space M’x



SO(3) and this way we were able to
decompose  any continuous  trajectory (o a
scquence of pairs of points.

Onc point which may not be so obvious
is that for cvery point Oy in the digitized
SO(3) we have to consider a different 3-D
representation of the solid. Thus if SO(3) is
digitized with n-points then we should have
n representations of the body cach one for a
different orientation. On the top of this we
should have 6n rot-solids  corresponding to
all the possible rotational transitions from
cach oricntation to the 6 neighboring. This is
necessary if we want to have a refined
representation of the rotational movements.
Il we want to avoid this we have to
compromis¢  with a general rot-solid
represented by the minimal covering sphere
for the whole body. This has already been

investigated  in collision  avoidance
problems.
In our proposed methodology we can

compute in advance the 3D representations
ol an object for each point in SO(3) and all
the related transitions (7*n 3D solids). This
have (o be done for all the objects whose
geometry is known and are present within a
restricted area of interest.

Thus the path planning and collision
avoidance problems end up as pure search
problems.

We  can further investigate ways to reduce
this brutc  force searching load by
exploiting  different facts. For example we
can investigate the relative  sizes of the
objects as well as  start the search from
points in the surface of 3D representation

Do @

Fig. 14 Three possible cases of two object
relative positions
since there are only three possible cases of
relative positions between two objects (Fig.
14).

I. No collision .
2. Collision with surfaces intersection
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3. The smaller body is within the bigger
body.

When there is an obvious difference in size
we can just investigate the surface points of
the smaller object first against all the
points on the surface of the second body
and then against all the points in the interior.
Further computational complexity analysis
is required to asses the capabilitics of this
framework.
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