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Abstract: This paper provides a brief summary of bifurcation control and of a recent related devel-

opment, namely closed-loop monitoring systems for detecting incipient bifurcation. These monitoring

systems use noisy precursors as a robust means for detecting an incipient loss of stability. Both Hopf

bifurcation and stationary bifurcation are considered.
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1 Introduction

Bifurcations are transitions in the steady state be-

havior of a dynamical system that are triggered

when a slight parameter variation renders unsta-

ble a nominally stable operating condition. Al-

though prediction of bifurcations is tantamount to

prediction of stability loss, a standard problem in

linear system analysis, bifurcations themselves en-

tail changes that cannot be predicted by linear sys-

tem analysis alone. In this paper, only local bifur-

cations are considered, i.e., bifurcations from an

equilibrium point of a nonlinear system. Some re-

cent achievements in bifurcation control and in the

allied subject of non-model based stability moni-

toring are summarized.

Since a detailed overview of bifurcation control

is already given in the paper [4], here we give only

a brief discussion of bifurcation control. We dis-

cuss in somewhat more detail the subject of closed-

loop monitoring systems for detecting incipient

instability, following the work of Kim and Abed

[5, 6]. The monitoring systems employ results on

so-called \noisy precursors," which are features ob-

served in the output power spectral density of a

system that is only marginally stable and excited

by a noise input. As these features become more

pronounced, they give a reliable indication of an

incipient loss of stability.

The paper proceeds as follows. In Section 2,

necessary concepts on bifurcations and bifurcation

control are reviewed. In Section 3, noisy precursors

of local bifurcations are explained. In Section 4,

a closed-loop stability monitoring technique that

uses noisy precursors is summarized.

2 Local Bifurcations and Local

Bifurcation Control

A bifurcation is a change in the number of steady

state solutions of a nonlinear system that occurs as

a parameter is quasistatically varied. The param-

eter being varied is referred to as the bifurcation

parameter. A value of the bifurcation parameter at

which a bifurcation occurs is called a critical value

of the bifurcation parameter. Bifurcations from

a nominal operating condition can only occur at

parameter values for which the condition (say, an

equilibrium point or limit cycle) either loses sta-

bility or ceases to exist.

Consider a general one-parameter family of or-

dinary di�erential equation systems

_x = F �(x) (1)

where x 2 IRn is the system state, � 2 IR denotes

the bifurcation parameter, and F is smooth in x



and �.

Local bifurcations are those that occur in the

vicinity of an equilibrium point. For example, a

small-amplitude limit cycle can emerge (bifurcate)

from an equilibrium as the bifurcation parameter

is varied. Local bifurcations can occur only when

the linearized system loses stability. Suppose, for

example, that the origin is the nominal operat-

ing condition for some range of parameter values.

That is, let F �(0) = 0 for all values of � for which

the nominal equilibrium exists. Denote the Jaco-

bian matrix of (1) evaluated at the origin by

A(�) :=
@F �

@x
(0):

Local bifurcations from the origin can only occur

at parameter values � where A(�) loses stability.

In a very real sense, the fact that bifurcations

occur when stability is lost is helpful from the

perspective of control system design. To explain

this, suppose that a system operating condition

(the \nominal" operating condition) is not stabi-

lizable beyond a critical parameter value. Sup-

pose a bifurcation occurs at the critical parameter

value. That is, suppose a new steady state solu-

tion emerges from the nominal one at the critical

parameter value. Then it may be that the new op-

erating condition is stable and occurs beyond the

critical parameter value, providing an alternative

operating condition near the nominal one. This is

referred to as a supercritical bifurcation. For exam-

ple, a supercritical Hopf bifurcation is depicted in

Fig. 1(a). In contrast, it may happen that the new

operating condition is unstable and occurs prior

to the critical parameter value. In this situation

(called a subcritical bifurcation), the system state

must leave the vicinity of the nominal operating

condition for parameter values beyond the critical

value. A subcritical Hopf bifurcation is depicted

in Fig. 1(b). Feedback o�ers the possibility of

rendering such a bifurcation supercritical. This

is true even if the nominal operating condition is

not stabilizable. If such a feedback control can be

found, then the system behavior beyond the sta-

bility boundary can remain close to its behavior at

the nominal operating condition.

The most important local bifurcations are sta-

tionary bifurcation, Hopf bifurcation and saddle
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Fig. 1(a). Supercritical Andronov-Hopf Bifurcation
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Fig. 1(b). Subcritical Andronov-Hopf Bifurcation

node bifurcation. These are discussed at length

in books on nonlinear dynamics; for references see

[4]. The stationary bifurcation and the Hopf bi-

furcation can be either subcritical or supercritical.

The saddle node bifurcation entails annihilation of

the nominal equilibrium, and is always a so-called

\dangerous" event. However, feedback control can

often be used to render supercritical a stationary

bifurcation or a Hopf bifurcation. This is discussed

in [1, 2, 4].

3 Noisy Precursors of Local

Bifurcations

In this section, results are recalled from [5, 6] that

extend the noisy precursor analysis of Wiesenfeld

[8] to systems operating at an equilibrium point.



Wiesenfeld considered systems driven by white

noise and operating near a periodic steady state.

In [5, 6], it is shown that the power spectrum of a

measured output for a system undergoing bifurca-

tion from an equilibrium exhibits sharply growing

peaks. This is used as a basis for the design of

closed-loop monitoring systems for detecting incip-

ient instability. The advantage of this method is

that it does not require availability of an accurate

system model|the noisy precursor characteristics

occur if a bifurcation is imminent, regardless of

system details.

Consider a nonlinear dynamic system (\the

plant")
_~x = f(~x; �) +N(t) (2)

where ~x 2 Rn, � is a bifurcation parameter, and

N(t) 2 Rn is a zero-mean vector white Gaussian

noise process. Let the system possess an equilib-

rium point ~x0. For small perturbations and noise,

the dynamical behavior of the system can be de-

scribed by the linearized system in the vicinity of

the equilibrium point ~x0. The linearized system

corresponding to (2) with a small noise forcing

N(t) is given by

_x = Df(~x0; �)x+N(t) (3)

where x := ~x� ~x0 and N(t) 2 Rn is a vector white

Gaussian noise having zero mean. For the results

of the linearized analysis to have any bearing on

the original nonlinear model, we must assume that

the noise is of small amplitude. This assumption

of small noise will be explicated below, in terms of

smallness of correlation and cross-correlation coef-

�cients. The distinct notation for the system state

~x and the linearized system state x was used here

for clarity. In the sequel, we will simply use the

notation x and the meaning will be clear from the

context.

In [5, 6], the power spectrum is calculated by

taking the Fourier transform of the autocovariance

function for xi(t). The details will not be repeated

here in the interest of brevity. Su�ce it to say that

analytical formulas are found for the power spec-

trum both in the case of Hopf bifurcation and in

the case of stationary bifurcation. The formulas

are asymptotic and assume that either a complex

conjugate pair of eigenvalues is nearing the imag-

inary axis or that a real eigenvalue is nearing the
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Fig. 2. Power spectrum magnitude for Hopf

bifurcation when ! = 10 for two values of �

origin. Fig. 2 depicts the nature of the result for

Hopf bifurcation, and Fig. 3 does the same for sta-

tionary bifurcation.

Fig. 2 is from an example in [5, 6]. It shows the

magnitude of the power spectral density of the i-th

state Sii(�) for ! = 10, for two values of �. Note

the sharp peak around ! = 10 that appears as �!

0. The power spectrum peak near the bifurcation

is located at !, and the magnitude of this peak

grows without bound as � approaches to zero. This

property will be used as a precursor signaling the

closeness to Hopf bifurcation.

In [5, 6], for the case of a stationary bifurcation it

is found that the magnitude of the power spectrum

peak grows as � approaches to zero and the location

of this peak is � = 0. Fig. 3 is from an example in

[5, 6]. It shows the magnitude of Sii(�). Note the

sharp growing peak around ! = 0 as �! 0.
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Fig. 3. Power spectrum magnitude for stationary

bifurcation for two values of �

4 Closed-Loop Monitoring System

Suppose the plant of interest is susceptible to loss

of stability through a stationary bifurcation. Since

Hopf bifurcation is easier to detect than stationary

bifurcation through noisy precursors, we introduce

a monitoring system that replaces the stationary

bifurcation with a Hopf bifurcation of tunable fre-

quency.

Let the plant obey the dynamics

_x = f(x; �) (4)

and suppose the following assumptions hold:

(S1) The origin is an equilibrium point of system

(4) for all values of �.

(S2) System (4) undergoes stationary bifurcation

at � = �c. (i.e., there is a simple eigenvalue

�(�) of Df(x0(�); �) such that for some value

� = �c, �(�c) = 0 and
d�(�c)
d�

6= 0)

(S3) All other eigenvalues of Df(0; �c) are in the

open left half complex plane.

We introduce the following augmented system

corresponding to (4):

_xi = f(x; �)� cyi

_yi = cxi (5)

Here, y 2 Rn, c 2 R and i = 1; 2; : : : ; n. Eq. (5)

will later be viewed as a basic monitoring system

whose use facilitates detection of either station-

ary or Hopf bifurcation. Note that the state vec-

tor consists of the original physical system states

x augmented with the states y of the monitoring

system.

Proposition 1 Under assumptions (S1)-(S3),

the augmented system (5) undergoes a Hopf

bifurcation from the origin at � = �c. Moreover, if

for any value of � the origin of the original system

(4) is asymptotically stable (resp. unstable), then

the origin is asymptotically stable (resp. unstable)

for the augmented system (5).

Note that since the value c in equation (5) is

adjustable, we can control the crossing frequency

of the complex conjugate pair of eigenvalues of the

augmented system. Thus, for detecting stationary

bifurcation, we only need to monitor a frequency

band around the chosen value of c. It is also possi-

ble to slowly vary c in a controlled fashion, giving

added con�dence in our assessment that an insta-

bility is imminent.

There are some other advantages of our moni-

toring system. The augmented system (5) has the

same critical parameter value (�c) as the original

system. This is actually not a luxury but a ne-

cessity for the system to be practically useful. In

addition, the proof [6] shows that augmenting the

states yi and applying the feedbacks cyi to the orig-

inal system does not change the local stability of

the system. Moreover, to apply the monitoring

system, we do not need knowledge of the original

system.
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