Enhancing GA-based Sequential ATPG through Guided Crossover

MICHAEL DIMOPOULOS, PANAGIOTISLINARDIS
Department of Informatics
Aristotle University of Thessaliniki
GR-54006Thessaloniki
GREECE

Abstract: Test Generation for digital circuits using deterministic methods is an NP-complete problem and for
that reason Genetic Algorithms have been recently investigated as an alternative to test generation. In this
paper a Genetic Algorithm “GATPG” is presented for generating test sequences for sequential circuits. The
aim is to produce compact test sequences that attain high fault coverage. In order to fulfil these requirements a
non-uniform selection probability for crossover is employed combined with an aging factor of variable-length
sequences and a two-phase fitness function. Candidate test sequence evaluation is accomplished with a 3-
valued fault simulator, allowing the circuit to start from an arbitrary (unknown) state. Experimental results
with respect to the ISCAS’89 benchmarks are presented to show the viability of the proposed approach.

Key-Words: Genetic Algorithms, Test Generation, Sequential Digital Circuits, ATPG.

1 Introduction

Test generation of combinational digital circuits
is a highly complex problem, typically it is NP-
complete [3]. For sequential digital circuits the
testing problem, which is the subject of this paper,
is even more complex.

Sequential circuits, for testing purposes, are
usually modeled as iterative arrays of
combinational circuits and test generation
techniques developed for combinational circuits are
extended to handle sequential circuits. Mainly two
approaches to testing are followed:

* Deterministic methods [3, 4, 6] that use branch
and bound techniques with the aid of heuristics
to prune the search space. Due to the vast
search space these techniques are often unable
to handle large sequential circuits[3, 12].

* Simulation-based methods [3] which are trial-
and-error methods. They generate random test
vectors which are evaluated by fault simulation
according to a “cost” function. Best trial vector
is selected and added to the test sequence.

In the “simulation” class of methods belong the

Genetic Algorithm (GA) simulation based

techniques [5, 9, 10, 11, 12]. In GA, initialy random

test sequences guided by genetic operators [1, 2]

evolve to highly fit solutions.

Recently, deterministic methods combined with

GAs were devised that achieve very good results [7,

8].

In this paper we propose a GA simulation-based
method, called GATPG, which contains a two phase
fitness function and puts emphasis on shorter, more
compact, test sequences by introducing a non-
uniform crossover operator.

The paper is organized as follows: In section 2 is
presented the testing problem for sequential circuits.
In section 3 the structure of the GATPG algorithm
is analyzed. In section 4 experimental results are
given, supporting the potential of the proposed
method.

2 Problem Formulation

A synchronous sequential circuit can be considered
to be a Finite State Machine M defined as a
quintuple M=(1,0,S,3,A) where 1 is the set of input
vectors, O is the output set, S is the set of states, 6
is the next state function and A is the output
function. A stuck-at fault f transforms the machine
M into a machine M=(1,0S;0sA¢). For a given list
of stuck-at faults F={f},f,,...,f;) the test generation
problem is to find a sequence of input vectors V,
called Test Sequence, that detects the faults in F,
that is when V is applied to each M; will produce
different responses from M.

It is assumed, here, that the initial state of M and Mg
is unknown, as is usually the case.

In this work the test sequences V are generated with
the help of genetic algorithms.

3 GATPG ALGORITHM

Create_random_population.

The algorithm is shown in Fig.1. Starting with an For each individual

initial population of randomly produced sequences Evaluate_fsim(individual);

of test vectors (Create random_population) each endFor

sequence (individual) is evaluated (Evaluate fsim) Sort_Population(); /* with fit. value descending™/
by performing fault simulation to find the faults

which are detected, propagated to flip-flops ngen=0; /* num of generation */
(activated), and state and output differences do {

between M and M; . These results are used to TR (VS0
determine the fitness value of each sequence, as for (j=0,i=0; 1 <ncross; j +=2, i++)

will be explained in section 3.2. The crossover {

operation (cross_over) applied here follows a non- cross_over(Individual[j], Individual[j+1],
uniform probability of candidate selection. childl, child2);

Evaluate fsim(child1);
Evaluate fsim(child2);
3.1 Individuals update_age_of(ch@ldl);
An individual is a binary-coded 2-dimensional bit update_age_of(child2);
string corresponding to a sequence of input vectors. j)
The length of this bit sequence is JHAIRTRES mutations *EEFRELEE/
L=ninputs*no_of test vectors. for (i=0; i < nmut; i +=2)

A characteristic of the GATPG algorithm is that it { i o i
uses variable-length sequences with respect to the mutagon(lndW?dual[O], Ch_ﬂd)5
number of test vectors. Starting with an initial mutation(Individual[1], child1);
sequence length of 5 vectors, sequence length Evaluate_fs¥m(ch¥ld);
progressively increases every 3 generations by Evaluate_fsim(child);

adding at the end one randomly generated vector. update_age_of(childl);

This approach has two advantages: lower update_age_of(child2);
simulation cost and more efficient test sequences. j)
The simulator, developed by the authors, is a Sort_Population();
PROOFS-based [4] 3-valued fault simulator. The
third value X emulates the unknown initial state of If ((ngen % 3) == 0)

the circuit. {
Expand_sequence(EXPAND_STEP);

Evaluate fsim(Individual[0]); /*check best*/

3.2 Fitness Function j

The results from the simulation are used to rank the ngent+;
individuals according to certain evaluation rules, } while (ngen < MAX_GENERATIONS);

which form the so called fitness function. Our - -
Fig.1 The GATPG algorith
fitness function is complex and has the form: g © algoritim

The rules that every individual should obey are:

B/, iff (ngen/MAX_GENERATIONS) < 0.25 R, = f detected

fitness =
) else _ seq.len — eff len
Ry =————
seq.len
where: factivated
fi =20R +R [R Ry =——
1 3 2 fremain + 1
_ Crr
fr =20R +R_+R [R_[R R =
1 3 4 5 2 4 numFF Ofactive Cheq.len
where: R, is a value denoting how “close” the Cour
individual is to satisfying rule i. R =

noutputs Ufactive [keq.len

where:
seq.len TotalFaults numFF
C = G..
P T
seq.len TotalF aults noutputs
C = G..
our = %,]zzl 2 G

i

B) else

In this fitness function emphasis is given in the
maximization of detected faults while favouring
smaller test sequences. A two-phase function is
used. Because in practice we have “easy” and
“difficult” to test faults [5] we start with f; and after
a number of gencrations switch to a different

function f,. As was mentioned, test sequences are

f.
G = Q iff okt % opy
l:]. - 1

extended every three generations by appending a
new randomly generated vector. In order to escape
from stagnation an aging factor is incorporated so
that offsprings having the same fitness value with
their parents are given higher precedence in the next
generation,

3.3 Genetic Operators

The creation of an offspring is accomplished with

the help of a crossover operator that interchanges

the bits of two individuals. The crossover operation

applied here is a one-point crossover [1, 2].

Two crossover operators are used:

e Standard cut-point selection is used with
uniform probability.

* A square root probability distribution function
is used to direct the cut-point selection towards
the end of the test sequence, thus giving
emphasis on optimizing the tail of the sequence
as new vectors are appended to it.

To ensure diversity, mutation is applied to the best

2 individuals in the population. Two different

mutation operations are used:

* Single-bit mutation: it randomly selects a bit
and complements it.

e Multi-bit-mutation: it randomly selects a vector
and for every bit within it a choice is made with
a probability of %2 whether to keep its value or
to complement it.

4 Experimental Results

The efficiency of the GATPG algorithm,
implemented in C, was measured by using some of
the ISCAS’89 benchmark circuits [13]. The main
characteristics of these benchmark circuits are given
in Table 1, where i, 0, ff, gates denote the number of
inputs, outputs, flip-flops, gates. Total detected are
the number of faults that can be detected and
against which the results are judged.

ala|circuit | i/o/ff/ gates | Faults|Total Detected
1 | s298 3/6/14/119 308 265

2 | s344 | 9/11/15/160] 342 329

3] s349 | 9/11/15/161| 350 335

4 | s382 3/6/21/158] 399 364

5 | s386 7/7/6/159| 384 314

6 | s400 3/6/21/164| 426 384

7 | s444 3/6/21/181| 474 424

Table 1. ISCAS’&9 circuits

For the GATPG we used the following parameter
values.

POPULATION = 16
MAX_GENERATIONS = 300
PCROSSOVER = 0.6
PMUTATION = 0.2
EXPAND STEP = |

In Tables 2 and 3 we present results regarding
uniform and square-root (sqrt) probability of cut-
point selection. Det., Vec. and Time represent the
number of detected faults, of test sequence length
and of the generations required to achieve these
sequences.

Circuit Det. Vec. Time (gen)
$298 264 79 242
s344 327 56 266
s349 332 51 295
$382 316 88 284
s386 254 39 284
s400 329 86 293
s444 360 91 258

[sum | 2182 | 490 | 1922]

Table 2. Uniform selection probability

Circuit Det. Vec. |Time (gen)
$298 265 93 292
s344 329 64 232
s$349 335 65 295
s382 323 94 276
s386 275 57 238
s400 337 85 232
s444 375 85 278

[Sum | 2239 [543 | 1843 |

Table 3. Sqrt selection probability

As we see from the above results sqrt selection
probability (Table 3) is better than uniform
selection probability (Table 2) because, in order of
importance, on the average: (a) it detects more
faults, (b) in relatively small sequences and (c¢) in
shorter time.

In Table 4 we compare our results with results
from [3, 6], were f.c and Vec. are the fault coverage
(detected faults to total detectable faults) and the
test sequence length.

As we see in Table 4 our results (sqrt, uniform)
regarding fault coverage for the first three circuits
are nearly the same with those of the others.

For the remaining circuits although our fault
coverage is lower (average fault cov. 0.932 (sqrt)
compared to 0.972 [5]) the size of our test
sequences is 2.5 times smaller than [5] and 22.8
times smaller than HITEC.

We must note that HITEC is a state-of-the art
deterministic test pattern generator that achieves
high fault coverage but requires long CPU time to
achieve satisfactory results. The method of [5]
belongs to the same category with our method.
There is no comparison with methods from [10, 12]
because they assume that the circuit starts from a
given initial state instead of the more general case
of an unknown (arbitrary) one.

sqrt uniform HITEC [5,6] [5]
Circuit f.c |Vec.| fc |Vec.| f.c Vec. f.c Vec.

s298 | 1,000| 93 10,996 79 | 1,000 306 | 1,000| 161

s344 1,000 64 10,994 56 | 0,997 142 |1,000| 95

5349 1,000 65 10,991] 51 | 1,000 137 |1,000]| 95

382 |0,887| 94 | 0,868 | 88 | 0,997 | 4931 | 0,953 | 281

386 | 0,876| 67 10,809 39 | 1,000 | 311]0,939| 154

s400 | 0,878 | 85 | 0,857 | 86 | 0,997 | 4309 | 0,951 | 280

s444 10,884 85 [0,849 91 | 0,976 | 2240 | 0,958 | 275

fault cov.| 0,932 0,909 0,995 0,972

test seq. 543 490 12376 1341

Table 4. Comparison with results from [5, 6].

4 Conclusion

A GA-based test generation algorithm is presented
which has some unique features. Apart from the
fitness function used here and the aging of

individuals, crossover is enhanced with a non-
uniform crossover-selection probability.

This “directed” cut-point selection in crossover
performs better than the classical one with uniform
probability cut-point selection as is evident from
experimental results presented here.

Although the preliminary results that were
presented are quite competitive with those of others
the GATPG algorithm may be further improved by
adding more circuit specific knowledge in the
fitness function and elaborating on GA-operators.

References:

[1] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
MA: Addisson-Wesley, 1989.

[2] Zbigniew Michalewicz, Genetic Algorithms+
Data Structures=Evolution Programs, Springer,
1996.

[3] M. Abramovici, M. Breuer, A. Friedman,
Digital Systems Testing and Testable Design,
IEEE Press, 1990.

[4] T. M. Niermann, W. T. Cheng, and J. H. Patel,
PROOFS A fast, memory-efficient sequential
circuit fault smulator, IEEE Trans. Computer-
Aided Design, 1992, pp. 198-207.

[5] E. M. Rudnick, J. H. Patel, G. S. Greenstein,
and T. M. Niermann, Sequential circuit test
generation in a genetic algorithm framework,
Proc. Design Automation Conf., 1994, pp. 698-
704.

[6] T. M. Niermann and J. H. Patel, HITEC: A test
generation package for sequential circuits,
Proceedings of the European Conference on
Design Automation, 1991, pp. 214-218.

[7] E. Rudnick, J. Patel, Combining deterministic
and genetic approaches for sequential circuit
test generation, DAC.,1995, pp. 183-188.

[8] M.H.Hsiao, E.M.Rudnick, J.H.Patel,
Alternating strategies for sequential circuit
atpg, European Design &Test Conf.,1996,pp.
368-374.

[9] D. G. Saab, Y. G. Saab, J. A. Abraham, CRIS
A Test cultivation program for sequential VLS
circuits, ICCAD, 1992, pp 216-219.

[10] F. Corno, P. Prinetto, M. Rebaudengo, M.
Sonza Reorda, GATTO: A Genetic Algorithm for
Automatic Test Pattern Generation for Large
Synchronous Sequential Circuits, IEEE Trans.
on CAD, Vol. 15, No 8, 1996, pp. 991-1000.

[11] M. Hsiao, E. Rudnick, J. Patel, Sequential
Circuit Test Generation Using Dynamic Sate
Traversal, European Design & Test Conf., 1997,
pp- 22-28.

[12] F. Corno, P. Prineto, M. Rebaudengo, M.
Sonza Reorda, R. Mosca, Advanced Techniques
for GA-based sequential ATPGs, European
Design & Test Conf., 1996.

[13] F. Brglez, D. Bryan and K. Kozminski,
Combinational profiles of sequential benchmark
circuits, Int. Symposium on Circuits and
Systems, 1989, pp. 1929-1934,

