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Abstract : - The coupling of electromagnetic fields inside shielded cables is an important issue in
electromagnetic compatibility and telecommunication applications, in which the transfer impedance represents
one of the main parameters[1].
But if it is easy to define this parameter in the case of coaxial cable, the problem is more difficult in a shielded
multiconductor lines.
We will be restricted to simple case of a shielded two-wire cable in which we determine parameters which
influence most on the magnitude of differential mode voltages.
We show that the principally origin of these voltages are : dissymetry of shield, dissymetry of interior
conductors and dissymetry of the loaded network connected at the both extremities of the cable.
Analysis of some numerical examples show that these dissymetries has very important practical consequences.
The most interesting one is the extension of the practical transfer impedance notion in different voltages.

1 Introduction
Nowadays the use of highly integrated electronic
circuits increases more and more. Due to the
replacement of mechanical measurement and
control devices by computer controlled electronic
equipment complex systems, as for example
aeroplanes, become vulnerable  to interfaces.
Especially the interconnections between the
electronic devices are very susceptible to incident
electromagnetic waves.
In many cases, the shield of transmission cables are
important path in the coupling between disturbing
sources and control systems[1] & [2].
We will be restricted to simple case of two-wire
cable.
When a two-wire cable is submitted to
electromagnetic field, we decompose the problem
in two subproblems that can be solved in a
sequential way.
 The first, the so-called external problem, is the
calculation of induced current and voltage along the
shield.
The second way is to apply the previous result to
evaluate the differential mode and common mode
voltages.
The common mode voltages is like the crosstalk
voltages appearing at both ends of the coaxial cable
“near-end and far-end crosstalk voltages”.

The origin of the differential mode voltage is very
difficult and so that we propose to evaluate its
magnitude versus the frequency and the length of
the cable.
If the shield of the cable have no revolution
dissymetry, we can show that the voltages between
the interiors wires and shield are not the same. The
result of it is the differential voltage induction
which is bounded to the differential transfer
impedance, the length of cable and the frequency.
A last case concerns the effect of the network of
impedance connected to the two extremities of the
two-wire cable or the dissymetry of the interior
conductors. In this case these dissymetries will
create a rejection from the common mode to
differential mode.
The practical consequences of the rejection are very
important as we will explain later.

2 Mechanism of coupling through
shielded cable
We consider a shielded two-wire cable loaded by a
network impedances.
The transmission line geometry of interest is shown
in figure 1.
Zd0 and ZdL are the differential mode impedances.



Zc01, Zc02, ZcL1 and ZcL2 are the common mode
impedances .
Assuming quasi-TEM propagation, the
transmission lines for voltages and currents are :

-d[V]/dz = [Z].[I] – [Zt].Ip   (1)
-d[I]/dz   = [Y].[V]+[Yt].Vp

[Z]=i.w.[L] and            [Y]=i.w.[C]

[L]  and [C] denote respectively, the per unit-length
self inductance and self capacitance of the either
lines (1) or (2).

The coupling through to shielded cable occurs by
two mechanisms. The transfer impedance Zt and
the transfer admittance Yt.
For a tubular shield with circular apertures, the
field penetration inside the sheath is caused by
diffusion and aperture penetration. An analytical
formula developed by Schelkunoff and Vance can
be used for the calculation of the transfer
impedance [3] & [ 4].

Figure 1 The geometry of the two-wires shielded
cable

Zt=Ztdiffu+Ztdiffra (2)
Ztdiffu=R0.(1+i).(e/δ)/sinh[(1+i).(e/δ)] (3)
Ztdiffr=i.w.Lt (4)
Lt=2.(1-A). µ0.d/(π2.d) (5)

A is the optical coverage, σ is the conductivity of
the shield, e is the wall thickness, and δ is the skin
depth in the shield given by

δ=1/(π.f.µ.σ)1/2 (6)
µ is the permeability of the shield.

µ0=4.π.10(-7) .
d is the diameter of the circular aperture
D is the diameter of the shield

R0=1/(2.π.r.e. σ) is the dc resistance of the tube per
unit length.
r is the radius of the shield
A plot of the magnitude of the transfer impedance
for a tubular shield with circular apertures is shown
in figure 2.

Figure 2  Variation of the transfer impedance of a
tubular shield with a circular apertures

At low frequencies, such that e/δ <<1 , the
magnitude of the transfer impedance is R0. At high
frequencies, such that |e/δ|>>1 , the magnitude of
the transfer impedance decreases very rapidly, so
that very little of the high-frequency spectrum is
permitted to penetrate to the interior of the shield.
The dominance of the diffusion term well below
20.104 Hz and the dominance of the w.Lt term well
above 20.104 Hz.

The solution of the differential equations system
can be obtained numerically. However, if the
distribution of the disturbing current Ip along the
shield is assumed to be :

Ip(z) = Ipo.e(-γp.z) (7)

the resolution of the differential equation (1) is
easy.

γp is the propagation constant of the disturbing
wave
In order to understand the mechanisms mentioned
in the introduction, we introduce the common and
the differential modes as follow:

Vc=(v1+v2)/2 (8)
Ic=(I1+I2)/2                           (9)
Vd=(V1-V2)/2                         (10)
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Id=(I1-I2)/2           (11)

The currents Ic and Id are solutions of the
following matrix equation:

(-d2i/dz) – (y).(z).(i) = -(y).(zt).Ip           (12)

Ic and Id are the elements of the matrix i.
The application of the boundary conditions on the
impedance’s connected at both ends of the cable
leads to the determination of the near-end and far-
end voltages of the two modes.

3 Dissymetries
As described in the introduction, we try to explain
in this section all parameters which influence most
on the differential voltages.

3.1 Shield dissymetry
This dissymetry concerns the direct action of the
shield on the two-wire cable by the differential
transfer impedance Ztd.
We take Lt1≠Lt2

3.2 Dissymetry of loaded network
This type of dissymetry interest the impedance’s
connected between conductors 1  or 2 and the
shield.
We explain this dissymetry by the follow
inequality:
Zc10≠Zc20≠Zc1L≠Zc2L

3.3 Dissymetry of the two-wire cable
If the conductors 1 and 2 are not identical or if their
position in relation to  shield  is   different, their
series impedance per unit length and their  shunt
admittance per unit length are different.
Z11≠Z22               &  Y11≠Y22

4 Results of the numerical simulation

4.1 Model parameters
The values used in this numerical simulation are:

L11=520 nH/m Z11=i.w.L11
L12=44.6 nH/m Z12=i.w.L12

    Z21=Z12
L22=L11 Z22=Z11

C11=50 pF/m                  Y11=i.w.C11
C12= –4.33 pF/m       Y12=i.w.C12      Y21=Y12

C22=C11           Y22=Y11

The length of the cable is L=1 m
The disturbing current is 1 A (Ipo=1A)

4.2 Shield dissymetry
In order to isolate the action of this dissymetry, we
take all parameters symmetrical. The value of Lt2 is
modified in relation to Lt1.

Lt1=0.75 nH/m
Lt2=0.65 nH/m

The impedance’s of the common mode are equal to
10 KΩ. The evaluation of the differential and
common modes voltages is plotted in the figure
(3)as a function of frequency, respectively from 10
KHz to  1 GHz.

Figure 3 Variation of the differential mode and
common mode voltages at z=0 and z=L

At low frequencies (λ>>L) , the magnitude of the
differential mode voltage is proportional to
disturbing wave.

Vd(0)=Vd(L)=0.5.i.w.Ltd.Ipo.L             (13)

Ltd=Lt1-Lt2                                      (14)

The differential mode voltages are proportional to
frequency and to length of the cable.

On the other hand, at high frequencies, this
evolution is interrupted by the propagation
phenomena. We achieve a maximum of magnitude
independently of frequency.

4.3 Interior conductors dissymetry
This dissymetry is related to shield two-wires and
concern directly their primary parameters. Here, we
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try to look for the effect of these parameters to the
magnitude of the differential mode voltages.
To simplify, we take the values as follow

L11=550 nH/m
L22=520 nH/m
L12=L21=67.9 nH/m
C11=48.2 pF/m
C22=50.2 pF/m
C12=C21=-6.21 pF/m

The impedance’s of the common mode are equals
to 10 KΩ.
In order to display the effect of this dissymetry, we
take the value of Ztd equal zero. The origin of the
differential voltages is caused by  mechanisms of
the common mode transfer, since we cancelled the
direct coupling by Ztd.
The magnitudes of the common and differential
voltages are plotted in the figure (4) as a function
of frequency.
We distinguish two frequency ranges in this figure.
At low frequencies, the level of the differential
mode voltage is very weak in comparison with the
common mode voltage. However, this magnitude is
proportional to the frequency.
At high frequencies, the differential mode voltage
present the same resonance phenomena like in the
common mode voltages.

Figure 4 Variation of the common mode and
differential mode voltages “Conductors

dissymetry”

At low frequencies, we find :
Vd0=z12.Ztc.L2.Ipo/(2.Zc01)             (15)

Ztc is the transfer impedance of the common mode.
If we define a modal conversion coefficient Tc
associated to this dissymetry, we show that:

Tc=|L11-L22|.π.L.f/(2.Zc01)             (16)

4.4 Dissymetry of the loaded network

The symmetry condition of the common mode
impedance’s fixed in both extremities of the cable
is not usually realised. So, it is indispensable to
evaluate the effect of this dissymetry on the
differential mode voltages.
To simplify, we suppose that Ztd is equal to zero
and the interior conductors are symmetrical.

Zc10=11 KΩ
Zc20=Zc1L=Zc2L=11 KΩ

The magnitude of the common mode and
differential mode voltages are plotted in the figure
(5).
We see that the differential mode voltage is a
constant fraction of the common mode voltage. So,
we have the same rejection phenomena like in the
previous dissymetry.
At low frequencies, the magnitude of the
differential mode voltage is bigger than the
magnitude of the common mode voltage.
We find :

|Vd(0)|=[Vd(L)|=z22.|Zc10-               (17)
                                 Z20|.|Vc(0)|/(4.γc.Zc102)

The conversion factor associated to this dissymetry
is :

Ti1=C(L11-L12).|Zc10-Zc20|/(4.εrc1/2.Zc102)   (18)

Figure5 Variation of the common mode and the
differential mode voltages “Dissymetry of the

loaded network”

C is the velocity of the light.
εrc is permittivity of the interior medium of the
cable.

This factor is independent of the frequency and the
length of the cable.
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5 Conclusion
The dissymetry of shield is always present in most
of usual cables.
If the two-wire cable is perfectly symmetrical and
the network impedance’s of common mode is
perfectly in equilibrium, the  differential mode
voltage has for origin the shield dissymetry. In this
case, the knowledge of the transfer impedance
allow us to evaluate the differential mode voltages.
On the other hand, if the network of impedance’s is
not in equilibrium, we will have a transfer from the
common mode to differential mode.
When k<<1, the transfer mechanisms will have a
negligible effect with regard to the dissymetry of
shield. This condition is almost satisfied for
frequencies lower than the resonance frequency of
common mode voltage.
Otherwise when k>>1, the differential mode
voltages will be a fraction from the common mode
voltages.
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