
Assembly Workstation Supervisory Control Technique

Daniela Cristina CERNEGA and Viorel MÎNZU
“Dunãrea de Jos” University Galati, Romania

Department of Automatic Control and Electronics
Str. Domneasca, No. 111, 6200 Galaþi, ROMANIA

Abstract
This paper proposes a control problem statement in the framework of supervisory control technique for the

assembly workstations, which obviously are discrete event systems. A desired behaviour of an assembly
workstation is analyzed. The behaviour of such a workstation is cyclic and some linguistic properties are
established. A necessary condition for the existence of a supervisor that meets the production constraints is
proved.

Key-words: - Assembly Systems, Discrete Event Systems, Supervisory Control in Discrete Event Systems

1. Introduction

This paper deals with a control problem for an
assembly workstation using the supervisory control
technique proposed by Wonham et al (see [1], [2] and
[3]).

To control an assembly system means to execute a
preplanned assembly process, taking into account the
mutual exclusion, the concurrence of tasks and the
cyclical usage of resources.

The formal linguistic properties of the assembly Petri
net have been studied by Suzuki, and Okuma (see
[4],[5]). Based on these properties, the supervisor for
an assembly Petri net is considered as a finite
automaton. The assembly process is regarded with a
high level of generality. The assembly Petri net used
has a tree structure, because it models the flow of
parts and subassemblies and it doesn’t take into
account the resources involved in the assembly
process.

A supervisor is an automaton that is connected with
the controlled discrete event system. Therefore, a
closed loop system is formed. A desired behaviour of
the discrete event system may be expressed by
sequences of events, which form a language.
Generally, a supervisor that assures the desired
behaviour exists, if two conditions are met (see the
supervisor existence theorem presented in [1]). The
first one is the controllability of the language
mentioned before. In this paper emphasize is placed
on the second condition (presented in section 3), in
the case of an assembly workstation. Formal
properties of a language that models the desired
behavior of the controlled system are stated.

In section 2, a model for an assembly workstation
is proposed. It is expressed by a controlled Petri net.

This is obtained from an assembly graph (see [6] and
[7]) considering the sharing of resources between
assembly tasks. Therefore, repetitive aspects are
introduced. In the framework of supervisory control
technique, the control problem for an assembly
workstation is stated in section 3. A necessary
condition for the existence of the supervisor is found
in section 4. This result is used in section 5, where
two examples of desired behavior are given.

2. Model for assembly workstation

An assembly system is a manufacturing system
which makes a product or a family of products. An
assembly system is composed by workstations, each
one making one or several tasks.

To execute the preplanned assembly processes, a
control problem must be solved talking into account
the mutual exclusion of some tasks, their concurrent
execution, and so on. In order to solve a control
problem, the system must be modeled in accordance
with all the aspects: parts, robots, fixtures,…

In this section, a model of workstation to be
controlled is proposed. In [6] the authors have
proposed the assembly graph as a model of the
assembly process, in the case of single product
assembly systems. A model of an assembly
workstation using the assembly graph was described
in [7]. The advantage of using the assembly graph
consists in the correct definition of tasks (both the
base and the secondary parts are defined) and there is
a systematic method for its construction.

For example, in fig. 1 is illustrated the assembly
graph corresponding to an assembly workstation.

Nodes represent tasks and arrows represent the
precedence relation between them.

The tasks are performed by two robots R1 and R2

using three fixtures P1, P2 and P3. The “branches” of
the assembly graph corresponds to the tasks that use
the same fixture. For example, the tasks 4, 5, 6 use
the fixture P2. In such a workstation, the activities
begin with loading the parts on the fixtures (the tasks
1, 4 and 7). The tasks 6 and 10 put together a base
part with a sub-assembly. A sequence of tasks is
associated to each of the five resources (three fixtures
and two robots). The task sequences are:

P1: 1 2 3 6

P2: 4 5 6 10

P3: 7 8 9 10 11

R1: 1 5 2 3 6 10 11

R2: 4 7 8 9 10 11

Generally, the task sequences are chosen in order
to eliminate any deadlock of the system.

A resource is delivered to its first task
immediately after the completion of the last task of its
sequence. Hence, the resources have a cyclic
behavior that is shown in fig.2.

As a discrete event system, the assembly
workstation is better modeled like a Petri net, because
the prerequisites for the execution of the task are
more explicit. We remind here after the definition of
a Petri net N:

N = (P, T, M0)

P: the set of all places

T: the set of all transitions

M0: the initial marking.

The Petri net corresponding to the workstation
model presented in fig. 2is shown in fig. 3.

In this Petri net a transition models a task and a
mark in a place has the meaning of a resource (part,
fixture or robot) available to begin a task. Because

the working of the system is cyclic, the number of
reachable marking (that is reachable state) is finite.

3. Supervisory control problem

For the workstation model presented before the
reachability graph of the Petri net is regarded as an
automaton R, in order to study its formal linguistic
properties:

R = (Qr, Σ, δr, qr0, Qm),

where :

Qr: the set of all reachable markings,

Σ : the set of symbols representing events,

δr: Σ* × Qr → Qr is the state transition function,

Σ*: the set of all finite strings of elements of Σ,

qr0 : the initial state corresponding to the initial
marking

Qm: the set of marker states.

The set of events Σ is given by:

Σ = T ∪ Tpara

where Tpara denotes a group of transitions which are
fired concurrently. In R there are strings µ which
satisfy δr(µ, qr) = qr.

Two languages over Σ are defined as follows:

L(N) = {σ∈Σ*| δr(σ, qr0) is defined }

Lm(N) = {σ∈L(N)| δr(σ, qr0) = Qm }

L(N) is the set of all the firable strings in N and
Lm(N) is the set of all the firable strings, which reach
the desired marking.

P3

P1

P2

R 1

R2

11

1 2 3

4 5
6

7 8 9 10

Figure 2 Task sequences for resources

P1

7 8 9 10 11 12

1 2 3

P3

P2
4 5 6

Figure 1. The assembly graph

The controlled Assembly Petri net Nc is the
original Petri net N extended with external control
places:

Nc = (P∪Pc, T, Ic, Oc, Mc0)

where

Pc the set of the external control places

Ic:T×(P∪Pc) →{0,1}

Oc:T×(P∪Pc) →{0,1}

Mc0 initial marking.

Consequently, two subsets can be defined in T:
one is a subset whose elements are controllable

transitions; the other is a subset in which every
element is an uncontrollable transition. That is:

Tc = { t ∈ T| ∃ i, Ic(t, pci) = 1 }

Tu = T - Tc

As a consequence, the events are controllable and
uncontrollable: Σ = Σu ∪ Σc, where

Σc = Tc ∪ Tcpara

Σu = Σ - Σc.

A control input for N is a set γ ⊂ Σ, with Σu ⊆ γ.

T10

P1

T12

T11

 T9

T8T5

T6

T3

T2

 T7 T4
T1

P18

P15

P13

P9

P6

P14

P7 P10
P11

P8

P3

P12

P16 P17

P19

P4

P5

P2

P20

Pc1

Figure 3. The controlled Petri net modelling the assembly workstation

Formally, a supervisor is a map

f: L(N)→ Γ,

where Γ is the set of control inputs.

The map f specifies, for each possible string of
events σ, the control input f(σ), which may be
applied at that point.

The desired behavior of the closed system may be
given as a language K⊆ Lm(N), or specifying
indirectly this language by a set of constraints.

A state realization for a supervisor f is a pair
(S,Φ), where:

S=(Qs, Σ, δs, qs0) is an automaton which
recognizes the language K, and

Φ: Qs → Γ is a mapping that gives the control
input γ for the current state of S.

That is γ = Φ(qs)∈Γ.

The language corresponding to the desired
behavior is controllable if:

KLK u ⊆∩Σ (1)

For the supervision control problem of a given
assembly workstation, there are considered as known
the following elements:

i) L(N): the closed behavior of N, that is
prefix closed, i. e. L(N) =)N(L (where L

is the set of all strings which are prefixes
of words from L);

ii) Qm: the set of marker states;

iii) Lm(N): the marked behavior of N (with
respect to Qm);

In addition, the system has the nonblocking
property:)N(L)N(Lm = .

The aim of supervisory control is not to modify
Lm, but to achieve a prescribed language K ⊆ Lm(N)
(who preserves the nonblocking property) for the
system equipped with the supervisor f (called closed
system).

Theorem 1 (Wonham)

For a given a nonblocking system N with closed
behavior L(N) and marked behavior Lm(N), and a
nonempty K⊆Lm(N), there exists a supervisor f such
that Lm(N,f)=K and the closed system is nonblocking
iff K is controllable and KLK m =∩ (that is K is Lm

closed).

(for the proof see [1])

Remark: The desired behavior of the system equipped
with a supervisor is actually chosen as a controllable
language (1) (with the desired behavior constrains for
the closed system). It remains to prove the Lm closure
of K and the nonblocking property of the closed
system. In the next section, it will be given a
necessary and sufficient condition for the Lm closure
of the language K (controllable) in order to guarantee
the supervisor existence in a system with cyclic
working.

4.Supervisor existence condition for an assembly

 workstation

This section deals with the existence of the
supervisor for an assembly workstation modeled as in
section 2. In this case, one may consider that there is
only one marker state qm. This state corresponds to
the situation when the robots and the fixtures are
available for their initial tasks. Without loss of
generality, the marker state qm will be considered as
initial state of controlled Petri net representing the
assembly workstation. Hence, the marked language
consists of all strings of events to determine the
transition from qm to qm.

Definition 1 : A cyclic sequence is a string of
transitions σ, having the property

δr(σ,qm)=qm..

Definition 2 : A cyclic sequence is called minimal if
any transition appears at most once.

Lemma 1: A sequence σ which satisfies the equality
δr(σ,qm)=qm such that any intermediary state is
different from qm is a minimal cyclic sequence.

The proof is based upon the fact that any transition is
firable at most one time between two passages
through the marker state.

Definition 3: A language K⊆L is cyclic when each
element is a juxtaposition of cyclic sequences.

Lemma 2: Any language K⊆L m is cyclic.

Proof: For any σ∈K, it holds σ∈Lm. Hence, the Petri
net passes through the marker state m times (m ≥ 1).
Applying lemma 1, it holds

σ = s1s2 …sm, (2)

where si, n,1i = are minimal cyclic sequences.
Hence, K is cyclic.

Definition 4 : A cyclic language K⊆L is cyclic prefix
closed when for any σ∈K, any prefix of σ which is a
cyclic sequence belongs to K.

A necessary and sufficient condition for the Lm

closure of K is given here after.

Theorem 2

∀K⊆Lm, K is Lm closed iff K is cyclic prefix closed.

Proof

(⇒) It will be proved that if K is Lm closed
(KLK m =∩) then K is cyclic prefix closed.

Let ∀σ∈K. Because K is Lm closed, σ∈Lm(N). So,
σ has the form (2). It was considered the case when
the marker states are reached several times.
Otherwise, we are in the trivial case when σ is a
minimal cyclic sequence. So, K is cyclic. Any prefix
of σ which is a cyclic sequence has the form s1s2 …si.
It’s obvious that s1s2 …si∈Lm(N) and s1s2 …si∈ K ,
∀i = m,1 . Hence, s1s2 …si∈)N(LK m∩ , i.e.

s1s2 …si∈K. One can conclude that K is cyclic prefix
closed.

(⇐) It will be proved that if K is cyclic prefix
closed, then:

KLK m =∩

Assuming K)N(LK m ≠∩ , this involves that there

exists a string σ such that:

σ ∈ K , σ ∈ (N)mL and σ∉K.

Because σ∈Lm(N), it has the form (2).

Because σ∈ K , there exists a string µ such that
σµ∈K. But K⊆Lm. That means
σµ=s1s2…smαm+1…αn, where αi are minimal cyclic
sequences i=m+1,…,n.

From σ αm+1 …αn ∈ K and σ∉K, one can deduce that
K is not cyclic prefix closed. That contradicts the
initial supposition. So, it holds:

KLK m =∩ q.e.d.

Example

Let the assembly workstation considered in
section 1. The marker state qm is given by a marking
whose places P1, P2, P3, P4,P5 have one token each,
and all the other places have no token M(Pi) = 0, i =
6,20:

qm= (1, 1, 1, 1, 1,0, 0, …,0).

Obviously, the controlled Petri net, which models
the assembly workstation, has the nonblocking
property because it has no deadlock. A desired
behavior of the closed loop may be described by the
following constraints:

1) Prohibit the concurrent execution of T1 and
T4. When T1 and T4 are concurrently firable,
give a priority to T4.

2) Prohibit the concurrent execution of T1 and
T7. When T1 and T7 are concurrently firable,
give a priority to T7.

3) Prohibit the concurrent execution of T1 and
T8. When T1 and T8 are concurrently firable,
give a priority to T8.

4) For a single assembly product, the workstation
works according to the sequence s1; for two
products according to the sequence s1s2; for
more than 2 products, the system uses the
sequence (s1)

n, n ≥ 3, where s1 and s2 are given
here after:

s1 = T4T7T8T1T9T5T2T3T6T10T11T12

s2 = T4T7T8T9T1T5T2T3T6T10T11T12.

So, the language K1 of the supervised system (N,
f) can be expressed as the regular expression:

K1 = s1 + s1s2 + s1
2s1*.

In order to guarantee the supervisor existence (see
Theorem 1), the language K1 has to be controllable
and Lm closed. The controllability of K1 is ensured
with a control place before T1, in order to control the
fire of this transition.

It is obvious that K1 is not cyclic prefix closed,
because the sequence s2s1 doesn’t have the prefix s2 in
the language K1. Under these circumstances, there is
no supervisor to meet the given constraints.

Another closed loop behavior K2 for the same
system can be specified with the following
constraints:

1) Prohibit the concurrent execution of T1 and
T4. When T1 and T4 are concurrently firable,
give a priority to T4.

2) Prohibit the concurrent execution of T1 and
T7. When T1 and T7 are concurrently firable,
give a priority to T7.

3) Prohibit the concurrent execution of T1 and
T8. When T1 and T8 are concurrently firable,
give a priority to T8.

For this control objective, the control language K2

to meet the constraints 1), 2), 3) can be described as
the regular language:

K2 = (s1 + s2 + s3 + s4 + s5)*, where s1 and s 2 are
the same as in the precedent example, and

s3 = T4T7T8T1T5T9T2T3T6T10T11T12

s4 = T4T7T8T1T5T2T9T3T6T10T11T12

s5 = T4T7T8T1T5T2T3T9T6T10T11T12

For this language, Theorem 2 guarantees the
existence of the supervisor because K2 is cyclic prefix
closed and controllable. The number of states of the
automaton N has 28 states. The automaton S to
recognize the language K2 to meet the constraints for
the closed loop system has 18 states.

5. Conclusion

In this paper, a control problem for assembly
workstations was presented. In order to state the
problem, a model for an assembly workstation was
proposed. It can be obtained in a systematic way,
using the assembly graph and introducing the
repetitive aspects due to the passage from a product
to another.

In the framework of the supervisory control
technique, the control problem was stated. A
necessary and sufficient condition that assures the Lm

closure of the desired behaviour K was proved.

To use this result, one must verify that the chosen
language K, which meets the production constraints,
is cyclic prefix closed. If, in addition, K is
controllable, then the supervisor exists.

6. References

[1] P. J. Ramadge, W. M. Wonham, Supervisory
Control of A Class of Discrete Event Processes,
SIAM J. Control & Optimization, Vol.25, No.1,
pp.206-230, 1987

[2] W. M. Wonham, P. J. Ramadge, On the Supremal
Controllable Language of a Given Language,
SIAM J. Control & Optimization, Vol.25, No.3,
pp.637-659, 1987

[3] P. J. Ramadge, W. M. Wonham, Modular
Feedback Logic for Discrete Event Systems,
SIAM J. Control & Optimization, Vol.25, No.5,
pp.1202 - 1218, 1987

[4] T. Suzuki, T. Kanehara, A. Inaba, S. Okuma, On
Algebraic and Graph Structural Properties of
Assembly Petri Net, IEEE Proceedings
International Conference on Robotics and
Automatics, pp 507 – 514, 1993

[5] T. Suzuki, S. Okuma, Supervisory Control of
Assembly Petri Net, IEEE Proceedings

International Conference on Robotics and
Automatics, pp 794 – 800, 1994

[6] V. Mînzu, J.M Henrioud; Systematic
Method for the Design of Flexible Assembly
Systems, IEEE International Conference on
Robotics and Automation, Atlanta-USA,
may 2-6, 1993.

[7] V. Mînzu, J.M. Henrioud; Appropche
systématique de structuration en postes des
systèmes d'assemblage monoproduits; Journal
Européen des Systèmes Automatisés, Vol.31,
No.1/1997, p57-78; HERMES ISSN 0296-1598.

